首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We have prepared yttria-stabilized-zirconia bicrystal substrates using a simple hot-pressing method. The grain-boundary junctions have been fabricated with YBa2Cu3O7 thin films grown epitaxially on the bicrystals. The patterns are defined by conventional photolithography, The dc and microwave characteristics of the junctiorts and the dc superconducting quantum interference devices (SQUIDs) have been intensively studied. The current-voltage curves are bridge-typed with noise rounding near the critical current. Resistive tail has been observed in the resistance versus temperature curves. The results are compared with the theoretical prediction for classical Josephson junctions. It is found that the behavior of bicrystal junctions can be described in the frame of classical theory. The deviations are attributed to the nonuniformity of the junctions. The small loop dc SQUIDs demonstrate diffraction and interference effects with regard to the applied magnetic field. A large square-washer with a new configuration has been designed to enhance the effective area of dc SQUID as a magnetometer. It has achieved a magnetic field resolution down to 1 pT/(Hz)1/2(at 10Hz) at 77K.  相似文献   

2.
Nanohybrid superconducting junctions using antimony telluride (Sb2Te3) topological insulator nanoribbons and Nb superconducting electrodes are fabricated using electron beam lithography and magnetron sputtering. The effects of bias current, temperature, and magnetic field on the transport properties of the junctions in a four-terminal measurement configuration are investigated. Two features are observed. First, the formation of a Josephson weak-link junction. The junction is formed by proximity-induced areas in the nanoribbon right underneath the inner Nb electrodes which are connected by the few tens of nanometers short Sb2Te3 bridge. At 0.5 K a critical current of 0.15 µA is observed. The decrease of the supercurrent with temperature is explained in the framework of a diffusive junction. Furthermore, the Josephson supercurrent is found to decrease monotonously with the magnetic field indicating that the structure is in the small-junction limit. As a second feature, a transition is also observed in the differential resistance at larger bias currents and larger magnetic fields, which is attributed to the suppression of the proximity-induced superconductive state in the nanoribbon area underneath the Nb electrodes.  相似文献   

3.
The prime motivation for developing the proposed model of AlGaN/GaN microwave power device is to demonstrate its inherent ability to operate at much higher temperature. An investigation of temperature model of a 1 μm gate AlGaN/GaN enhancement mode n-type modulation-doped field effect transistor (MODFET) is presented. An analytical temperature model based on modified charge control equations is developed. The proposed model handles higher voltages and show stable operation at higher temperatures. The investigated temperature range is from 100 °K–600 °K. The critical parameters of the proposed device are the maximum drain current (IDmax), the threshold voltage (Vth), the peak dc trans-conductance (gm), and unity current gain cut-off frequency (fT). The calculated values of fT (10–70 GHz) at elevated temperature suggest that the operation of the proposed device has sufficiently high current handling capacity. The temperature effect on saturation current, cutoff frequency, and trans-conductance behavior predict the device behavior at elevated temperatures. The analysis and simulation results on the transport characteristics of the MODFET structure is compared with the previously measured experimental data at room temperature. The calculated critical parameters suggest that the proposed device could survive in extreme environments.  相似文献   

4.
《Current Applied Physics》2015,15(5):569-573
Two-stacked submicron Josephson junctions devices were fabricated in a-axis oriented YBaCu3O7 and PrBa2Cu3O7 (Y123/Pr123) multi layered thin films using focused ion beam milling technique. The transition temperature and critical current density (Jc) of the device are about 83 K and 5 × 105 A/cm2 at 20 K, respectively. The device was irradiated with external microwave of 10 GHz and studied at 20 K. The microwave induced voltage steps are observed in I–V characteristics. The supercurrent branch become resistive above a certain microwave power and also the Jc was suppressed as we increased the microwave power. Magnetic field modulation of critical current shows periodicity of about 2000 gauss correspond to the Josephson junctions in the stack.  相似文献   

5.
We have studied metastability effects pertaining to the peak effect (PE) in critical current density (J c) via isofield scans in AC susceptibility measurements in a weakly pinned single crystal of Yb3Rh4Sn13 (T c(0) ≈ 7.6 K). The order-disorder transition in this specimen proceeds in a multi-step manner. The phase coexistence regime between the onset temperature of the PE and the spinodal temperature (where metastability effects cease) seems to comprise two parts, where ordered and disordered regions dominate the bulk behavior, respectively. The PE line in the vortex phase diagram is argued to terminate at the low field end at a critical point in the elastic (Bragg) glass phase.  相似文献   

6.
HTS bicrystal junctions up to 50 μm wide on sapphire substrates have been studied. The dependences of the critical current on the temperature and external magnetic field of these contacts have been measured. The irradiation of the Josephson junction on a sapphire substrate at the frequency of 73 GHz at the temperature of 77 K resulted in the appearance of Shapiro steps in the current–voltage characteristic (IVC) at the voltage of 150 μV. The possibility of using such contacts in voltage standards at the temperature of 77 K in the ranges of microwave and terahertz frequencies has been analyzed.  相似文献   

7.
Dependences of the microwave absorption on temperature, magnetic field and microwave power obtained for the high-T c superconductors are presented. Shape of the magnetically modulated microwave absorption, low-field phase diagram and overheating of the Josephson junction system induced by microwave irradiation are discussed. The model of the Josephson junction system interacting with microwaves has been used to explain the behavior of the high-T c superconductors in low magnetic field.  相似文献   

8.
The La0.8Sr0.2MnO3/ZnO heterostructures with different thicknesses of ZnO films are fabricated by using RF magnetron sputtering technique. The heterojunctions exhibit excellent rectifying properties at 300 K. At low temperatures the temperature dependent junction resistance exhibits a metal-insulator transition like behavior. A magnetic field strongly impacts on electrical characteristics of La0.8Sr0.2MnO3/ZnO p-n junctions, i.e., depressing the junction resistance greatly and driving the metal-insulator transition temperature (TMI) towards higher temperatures. Large magnetoresistance is observed below TMI, and it increases with increasing magnetic field and almost saturates at 5 T, i.e., above −90% at 100 K and 5 T.  相似文献   

9.
We have developed and tested a submillimeter waveguide SIS mixer with NbN-MgO-NbN quasiparticle tunnel junctions. The two junction array is integrated in a full NbN printed circuit. The NbN film critical temperature is 15 K and the junction gap voltage is 5 mV. The size of the junctions is 1.4 × 1.4 µm and Josephson critical current density is about 1.5 KA/cm2 resulting in junction RNC product about 40. The inductive tuning circuit in NbN is integrated with each junction in two junction array. A single non contacting backshort was tuned at each frequency in the mixer block.At 306 GHz the minimum DSB receiver noise temperature is as low as 230 K. The sources of the receiver noise and of the limits of the NbN SIS submillimeter mixer improvement are discussed.  相似文献   

10.
We have investigated the threshold properties of Rubidium blue bronze Rb0.3MoO3 under high dc electric field in a large temperature range 20-150 K. The second threshold fields have been observed at temperature up to 102.4 K, and have quasi-linear relationships with temperatures 20-45 K and 55-100 K, respectively. A novel crossover platform has been found firstly in the temperature dependence of the second threshold field ET2 at about 45-55 K. The results indicate that the dynamical behavior of the second threshold effects may originate from different mechanisms. We suggest that the highly conducting state at 20-45 K and 55-100 K result from the undamped sliding motion of rigid CDW and current inhomogeneity, respectively.  相似文献   

11.
郭娟  董成  高红  闻海虎  杨立红  曾富  陈红 《中国物理 B》2008,17(3):1124-1129
The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the microwave method. The carbon can distribute uniformly in the Mg(B1-xCx)2 samples because boron and carbon are mixed on an atomic scale in the staring material B10C. The dependences of both lattice parameters and superconducting transition temperature Tc on carbon content accord with those reported in the literature. The upper critical field He2 at 20 K can be enhanced from about 4.3 T for x = 0 to 10 T for x = 0.05. The critical current density Jc of Mg(B0.95 C0.05)2 is 1.05×10^4 A/cm^2 at 20 K and 1 T.  相似文献   

12.
Abstract

We have studied the effects of fast neutron (E>0.1 MeV) irradiation at reactor (~ 360 K) and low (~ 20 K) temperatures on the superconducting properties of polycrystalline orthorhombic YBa2Cu3O7?y . Measurements were made on the superconducting critical temperature Tc , critical current Jc , Meissner effect and magnetic field dependence of Jc . The Tc drops by an irradiation at reactor temperature and Jc increases with increasing fluence. On the other hand with the irradiation at low temperature, Tc rises and Jc increases. Results of observation of Meissner effect and the magnetic field dependence of Jc are consistent with the behavior of Tc and Jc .  相似文献   

13.
We experimentally studied the transport properties and magnetoresistance behavior of a La0.7Ce0.3MnO3/SrTiO3 (doped by 1 wt% Nb) junction. Based on the analyses of the current-voltage relations and the depletion width, we conclude that the dominant transport mechanism of the junction is tunneling. The magnetoresistance of the junction is negative throughout the whole bias voltage range (from −1 V to 0.4 V) and the whole temperature range (below 300 K). It is believed that the magnetic field depresses the junction resistance by reducing the depletion width of the junction.  相似文献   

14.
An experimental study of the effect of low-frequency transport current on the microwave conductivity of single-crystal La0.7Pb0.3MnO3 is reported. In the absence of an external magnetic field, the microwave conductivity response to a current follows a relaxation behavior. In a nonzero external magnetic field, the response spectrum exhibits a peak of resonant amplitude enhancement. The resonant response has a nonlinear nature. The temperature and field dependences of the main parameters of the microwave response correlate directly with the behavior of the magnetoresistance. The results obtained are analyzed within the oscillator approximation. Electronic phase separation is proposed as a possible mechanism for the current action. Fiz. Tverd. Tela (St. Petersburg) 41, 2187–2192 (December 1999)  相似文献   

15.
Polycrystalline samples of YBa2Cu3O7 were studied by the microwave absorption technique at the low magnetic fields in the temperature range from 5 to 80 K. The direct microwave absorption and the field modulated microwave absorption were measured at 77 K. Analysis of the microwave absorption curves indicates that the field penetration into the sample starts from the lowest values of applied magnetic field within the whole temperature range.  相似文献   

16.
Current-voltage characteristics of planar junctions formed by an epitaxial c-axis oriented YBa2Cu3O7−x thin film micro-bridge and Ag counter-electrode were measured in the temperature range from 4.2 K to 300 K. A hysteretic behavior related to switching of the junction resistance from a high-resistive to a low-resistive state and vice-versa was observed and analyzed in terms of the maximal current bias and temperature dependence. The same effects were observed on a sub-micrometer scale YBa2Cu3O7−x thin film-PtIr point contact junctions using Scanning Tunneling Microscope. These phenomena are discussed within a diffusion model, describing an oxygen vacancy drift in YBa2Cu3O7−x films in the nano-scale vicinity of the junction interface under applied electrical fields.  相似文献   

17.
We report the results of studies of rectifying behavior, positive magneoresistance (MR), the charge-transport mechanism and the effect of an electric field on a ZnO (n)/La0.5Pr0.2Sr0.3MnO3 (LPSMO) (p)/SrNb0.002Ti0.998O3 (SNTO) (n) heterostructure comprising two p–n junctions fabricated using the pulsed laser deposition technique. The heterostructure exhibits rectifying behavior over a wide temperature and field range having hysteresis in IV behavior (forward bias) due to the tunneling of charge carriers. It is also observed that, depending on the nature of the electric field bias to n-type ZnO and SNTO, the junction resistance becomes modified, which has been explained on the basis of spin injection in the heterostructure. The observation of unconventional positive MR at room temperature has been justified on the basis of interface effects and the reduction in barrier height obtained using fitting of the IV data by a thermionic emission model.  相似文献   

18.
We report on study of the vortex liquid in Pb-doped Bi-2223 single crystal using the in-plane resistivity measurements as a function of temperature and magnetic field up to 6 T applied perpendicular to CuO planes. Below T c at the upper part of superconducting transition we found Arrhenius-like resistivity behavior. With further temperature decrease close to onset of dissipation resistivity shows power law dependence on temperature signaling approaching vortex-glass transition. The critical exponents ν(z − 1) = 4.6 ± 0.5 are found to be field independent within experimental errors. We also present magnetic phase diagram defining region of nonzero critical current for Pb-doped Bi-2223 single crystal.  相似文献   

19.
The addition of silver to YBa2Cu3O7−δ (Y123) is well known to decrease its decomposition temperature. This study demonstrates the success in welding large Y123 textured samples with Ag doped Y123 junctions. Attempts to weld two melt textured domains of Y123 by a 1 mm thick layer of Ag doped Y123 are reported. The crucial importance of the initial Y211 excess content in the spacer material is pointed out. Microstructural observations, trapped field measurements and transport critical current density measurements prove that for a given Y211 amount a very high joint quality can be obtained. A transport critical current density as high as 10 kA/cm2 is registered through the junction at 77 K and 5 T when the applied field is parallel to the (a,b) planes.  相似文献   

20.
We report on the synthesis of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave assisted combustion route by using urea as fuel. XRD and FT-IR analyses confirm the composition and structure as spinel ferrite. The crystallite size estimated from XRD (16.4 nm) and the magnetic core size (15.04 nm) estimated from VSM agree well, while a slightly smaller magnetic diameter reflects a very thin magnetically dead layer on the surface of the nanoparticles. Morphological investigation of the products was done by TEM which revealed the existence of irregular shapes such spherical, spherodial and polygon. Magnetization measurements performed on Zn0.7Ni0.3Fe2O4 nanoparticles showed that saturation was not attained at even in the high magnetic field. The sample shows superparamagnetic behavior at around the room temperature and ferromagnetic behavior below the blocking temperature which is measured as 284 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号