首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
景敏  华灯鑫  乐静 《物理学报》2016,65(7):70704-070704
为实现对水面油污染的探测, 根据荧光激光雷达系统的发展趋势, 采用激光诱导荧光技术, 建立了适用于水面油污染探测荧光激光雷达的系统模型. 提出采用单激光器结合增强电荷耦合器件的小型荧光激光雷达探测系统, 通过分析激光器单脉冲能量与探测浓度之间的关系, 结合荧光激光雷达系统参数, 对系统模型的探测能力与信噪比等进行了数值仿真. 结果表明, 系统选用单脉冲能量50 μJ的355 nm Nd:YAG激光器作为激发光源, 白天在7 m的距离处探测信噪比可以达到10, 满足实验室搭建模拟系统的要求. 针对实际探测水面油污染, 提出采用增大激光器功率的方法, 并通过模拟计算验证了采用50 mJ的单脉冲能量激光器在230 m的探测距离处可得到与实验室相同的结果, 对实际系统的搭建具有指导意义.  相似文献   

2.
陈锐  周霖 《应用光学》2006,27(5):455-459
对激光诱导荧光(LIF)光谱技术在燃烧过程中的应用进行研究,介绍测量燃烧过程中常见自由基OH和NO的LIF光谱的实验方案,以及采用激光诱导荧光光谱技术测量小分子荧光光谱的方法,利用YAG激光器、染料激光器、CO2激光器、光谱仪、ICCD等设备对燃烧产物中常见小分子自由基OH和NO进行了测量,从实验中得到了自由基OH和NO的荧光光谱。实验结果表明,荧光光谱与激发波长无关,但是激发波长改变后,荧光强度因离开最佳波长而有所下降,这符合分子荧光光谱的特征。与其他光谱技术相比,激光诱导荧光光谱技术具有极高的选择性和灵敏度。  相似文献   

3.
基于激光诱导荧光(LIF)原理和弹性散射作用于非球形粒子上形成的偏振特性,设计并研制由3个激光波长、2个接收望远镜、退偏组件和荧光光谱仪等组成的生物战剂/气溶胶Mie散射、荧光和偏振激光雷达。退偏比的水平测量结果表明:1) 退偏比表现出较强的波长依赖性;2) 多波长退偏比测量可以显著提高生物战剂的鉴别能力。退偏比的垂直测量结果表明:气溶胶在边界层内总体上维持在较低的水平,在温湿压风等气象条件和光生化条件的作用下,对流层底层空变化明显,在部分云团处,退偏振比可达0.3;气溶胶的Mie散射时空分布表明,355 nm波长的测云能力在激光出射能量相当时较532 nm强。  相似文献   

4.
星载激光雷达是实现海洋垂直剖面探测的有效工具,也是目前迫切需求的海洋光学遥感手段。对星载海洋激光雷达的波长参数进行评估对保证探测有效性具有重要意义。本文从探测深度和信噪比两方面分析了星载海洋激光雷达探测全球海洋的最佳波长。利用MODIS 10个波段的水体光学特性数据,估算全球海水探测深度及相应的最优波长;并根据太阳夫琅禾费暗线特性,对信号信噪比进行优化。结果表明:在探测深度方面,最优探测波长在488 nm波段的海洋占全球海洋面积的70%左右,并且全球95%以上的海域在488 nm波段的探测深度优于0.8倍的真光层深度;在信噪比方面,相对于488 nm波段,486.134 nm夫琅禾费暗线处采用0.1 nm带宽的滤光片可以将背景光强度降低70%,相应地回波信噪比整体提升了约5.0%。就全球海洋探测来说,使用486.134 nm作为探测波长可以提高探测深度,有效抑制太阳背景光,提高信噪比,因此,486.134 nm是星载海洋激光雷达的最佳工作波长。  相似文献   

5.
水污染物的激光诱导荧光测定   总被引:5,自引:2,他引:3  
简单介绍了激光诱导荧光(LIF) 产生的机理。以3 倍频Nd:YAG 激光( 波长355nm) 为激发源,研究了水中几种典型污染物的LIF 谱。结果表明这些污染物可用LIF 方法加以探测和鉴别。  相似文献   

6.
气温是描述大气状态的基本参数之一,温度的准确测量对天气预报、气候预测及其他气象参数的反演都至关重要。激光雷达作为一种遥感仪器,已经用于气象要素的探测中(风、温度、气溶胶的光学厚度等)。目前,测温激光雷达主要有拉曼激光雷达(振动和转动)、共振荧光激光雷达和Rayleigh散射激光雷达等,拉曼激光雷达需要大功率的激光器和复杂的背景滤波器;共振荧光激光雷达无法探测平流层内的温度;基于Rayleigh散射的测温激光雷达多应用于温度的相对测量,反演温度时需要建立响应函数和校准程序;基于固体腔扫描F-P干涉仪测量大气Rayleigh散射光谱来反演温度的方法,时间分辨率较低,并且该方法在测量过程中需要运动部件,所以不利于星载。在大气低层,分子的Rayleigh散射光谱会受到Brillouin散射的影响,两种散射信号叠加形成的Rayleigh-Brillouin散射光谱不再服从Gaussian分布,直接通过测量散射光谱的半高全宽来反演温度,会产生误差。基于回波能量的方法会受到气溶胶Mie散射信号的影响,所以在对流层中该方法并不适用。为了实现对流层内温度的高精度和高时间分辨率的测量,提出利用Fizeau干涉仪和PMT阵列对对流层内分子的Rayleigh-Brillouin散射光谱进行测量,并通过插值的方法来对回波信号中气溶胶Mie散射信号进行抑制,从而使Mie散射信号对温度反演的影响较小,最后将测量光谱和理论光谱进行全光谱匹配来实现温度的反演。除此之外,还对Fizeau干涉仪的自由光谱区、固体腔几何长度、腔体反射率、扫描间隔等参数进行了优化设计。为了验证本文提出方法的可行性,利用Matlab软件建立了一套仿真模型,通过模拟表明,在不考虑云、风和水汽含量的影响时,利用该方法测量对流层内的大气温度时,测量误差小于1 K。该测温方法可以对对流层内的大气温度廓线实现高精度、高时间分辨率的测量, 在测量过程中不需要使用运动部件,有较高的使用价值,并对同类高光谱激光雷达分光系统的研究具有借鉴意义, 为我国高光谱激光雷达陆基及星载应用提供了一套可行的技术方案和温度反演方法。  相似文献   

7.
A single-laser single-camera imaging technique was demonstrated for in-cylinder temperature distribution measurements in a direct-injection internal combustion engine. The single excitation wavelength two-color detection technique is based on toluene laser-induced fluorescence (LIF). Toluene-LIF emission spectra show a red-shift with increasing temperature. Temperature can thus be determined from the ratio of the signal measured in two separate wavelength ranges independent of the local tracer concentration, laser pulse energy, and the intensity distribution. An image doubling and filtering system is used for the simultaneous imaging of two wavelength ranges of toluene LIF onto the chip of a single camera upon excitation at 248 nm. The measurements were performed in a spark-ignition engine with homogeneous charge and yielded temperature images with a single-shot precision of approximately ±?6%.  相似文献   

8.
以Nd:YAG的二倍频532 nm激光为激发光源,用激光诱导荧光(LIF)方法对几种不同水体中溶解有机物(DOM)和叶绿素a(Chl-a)的荧光光谱进行了测量和分析;并以水体对532 nm激发光的散射进行了水体浊度特性的研究,给出了散射光强度与浊度的关系曲线;研究结果表明,用此种方法测量水体浊度和污染物浓度可对水体质量进行有效的监测。  相似文献   

9.
Walewski JW  Sanders ST 《Optics letters》2005,30(18):2394-2396
Rapid excitation scans of laser-induced fluorescence (LIF) have been demonstrated. Broadband light was generated in a photonic crystal fiber and transmitted through a long fiber. Due to group-velocity dispersion in the long fiber, a wavelength scan emerged from the fiber in time. The wavelength was swept over approximately one octave in approximately 150 ns. The generated light was used to excite LD 700 Perchlorate diluted in methanol. The LIF excitation scan had a spectral resolution of approximately 15 nm, and the integrated fluorescence spectrum was found to be within 7% of the integrated absorption spectrum of the dye molecule. The method presented makes possible spatially and spectrally resolved LIF excitation scans with scanning speeds up to the limits set by the excited-state lifetime of the dye molecule.  相似文献   

10.
万文博  华灯鑫  乐静  闫哲  周春艳 《物理学报》2015,64(19):190702-190702
针对植物荧光遥感探测中信号易受干扰的问题, 提出了一种用于评估植物生长状况及环境监测的荧光寿命成像技术. 采用凹透镜对355 nm波长的激光扩束, 再照射植物激发叶绿素荧光, 由增强型电荷耦合器件接收荧光信号. 采用时间分辨测量法, 连续用相同激光脉冲照射植物以激发相同的荧光信号, 同时不断改变激光脉冲触发探测器启动的延时时间, 从而能够得到完整的离散荧光信号分布图像. 对植物特定位置点产生的离散荧光信号进行拟合, 再运用一种改进型的迭代解卷积法可反演高精度的荧光寿命; 进而反演图像各点的荧光寿命以生成植物的荧光寿命分布图. 该方法所绘制的荧光寿命图比荧光强度图能更准确地反映植物内部的叶绿素含量, 并对活体植物叶绿素荧光寿命的物理特性进行了初步研究, 证明叶绿素荧光寿命与植物生理状态存在一定关联; 并且叶绿素荧光寿命与活体植物所处环境存在着复杂的关系. 未来将与生物物理学家们合作, 继续探寻叶绿素荧光寿命与植物生存环境的关系.  相似文献   

11.
We report spatially resolved linear laser-induced fluorescence (LIF) and planar laser-induced fluorescence (PLIF) measurements of nitric oxide (NO) in a pre-heated, high-pressure (4.27 atm), lean direct-injection (LDI) spray flame. The feasibility of using PLIF in lieu of LIF is assessed with respect to measuring NO concentrations in high-pressure LDI spray flames. NO is excited via the resonant Q2(26.5) transition of the γ(0,0) band while a non-resonant wavelength is employed to subtract background interferences. LIF detection is performed in a 2-nm region centered on the γ(0,1) band. PLIF detection is performed in a 68-nm window that captures fluorescence from several vibrational bands. An in situ NO doping scheme for fluorescence calibration is successfully employed to quantify the LIF signals. However, a similar calibration scheme for the reduction of PLIF images to quantitative field measurements is plagued by the laser-excited background. Excitation scans and calibration comparisons have been performed to assess the background contribution for PLIF detection. Quantitative radial NO profiles measured by LIF are presented and analyzed so as to correct the PLIF measurements to within the accuracy bars of the LIF measurements via a single-point scaling of the PLIF image. Received: 23 November 1999 / Revised version: 17 January 2000 / Published online: 27 April 2000  相似文献   

12.
激光诱导水体频率上转换的荧光发射   总被引:4,自引:2,他引:2  
用Nd:YAG的二倍频532 nm激光对几种不同水体的激光诱导荧光(LIF)光谱进行了测量,利用特征光谱荧光标记(SFS)技术指认出水体中溶解有机物(DOM)、叶绿素a(Chl a)及类胡萝卜素等物质的特征光谱带。指出在455 nm波长处具有较大强度的荧光峰是附属色素中抗氧化作用的类胡萝卜素(PPC)的贡献。提出了激光诱导PPC荧光频率上转换发射的动力学模型。  相似文献   

13.
A simultaneous visualization technique of reacting and unburned zones using laser-induced fluorescence (LIF) was applied to a high-pressure combustion field in an engine cylinder. Crevice flow from a crevice between a piston and a cylinder wall of a spark ignition gas engine was visualized by LIF of OH and acetone. OH was excited simultaneously with acetone that was seeded into fuel as a tracer by an excitation light at 283.92 nm. Fluorescence signals from each species were detected individually by two intensified CCD cameras using optical band-pass filters which transmit fluorescence wavelength of OH and acetone, respectively. Pressure- and temperature-dependence of LIF signals from each species were evaluated. From the visualized images, it was clarified that oxidation of the crevice flow is stopped at the time of exhaust valve opening. Effects of exhaust port pressure on the oxidation process were investigated.  相似文献   

14.
激光诱导荧光是海洋溢油探测的有效手段之一,但该技术的应用易受自然水体中叶绿素、CDOM等物质荧光信号的干扰。为了寻求排除自然水体荧光干扰的方法,基于532 nm连续激光器搭建了激光诱导偏振荧光实验装置,并针对六种不同密度的模拟溢油样品和自然水体开展了荧光光谱偏振特性研究。实验结果发现,与自然水体的荧光光谱不具有明显的偏振特性不同,所有模拟溢油样品的诱导荧光均具有明显的偏振特性,这一结论说明激光诱导荧光光谱的偏振特性可以作为排除叶绿素、CDOM等物质荧光干扰的依据。实验还发现,溢油样品的荧光偏振性质因样品种类而异。在线偏振光激发下,原油样品荧光偏振度随波长逐渐降低,其中重质原油样品偏振度降低幅度最大,轻质原油样品幅度最小,而柴油样品荧光偏振度没有明显变化;当周期性改变激发光的偏振状态时,所有模拟溢油样品的荧光偏振度随之发生趋势相同的周期性波动,中质样品荧光偏振度波动的幅度低于重质样品,但明显超过轻质样品。这一结果说明,模拟溢油样品诱导荧光偏振度的波长变化特性及对激发光偏振态的响应特性均与样品密度存在一定关联,其偏振特性可以作为辅助油种识别的重要参量。  相似文献   

15.
The wind error of multichannel lidar system is simulated through calculation of atmospheric back-sacttering echo signal and weighted least-square fitting. By comparing the wind errors of four wavelengths of the Nd:YAG laser, two kinds of phenomena are found: when the wavelength is 1064 nm, the wind error is the smallest at all different heights; with the aerosol-molecular ratio descending and finally tending to 1, the statistic error increases sharply, which shows that low aerosol-molecular ratio is quite disadvantageous whatever the signal intensity is.  相似文献   

16.
Laser-induced fluorescence imaging lidar was developed for in vivo plant/vegetation monitoring. Fluorescences of poplar tree leaves growing naturally at a distance of 60 m from the lidar were successfully detected as two spectral images at wavelengths of 685 nm and 740 nm. By comparing chlorophyll concentration quantified with high performance liquid chromatography, it was confirmed that the intensity ratio of the two wavelengths was converted into the chlorophyll concentration inside the leaves. The intensity ratio of the images reflected the status of the poplar tree in the process of senescence so well that it was possible to assess the living status of the tree as a numerical value. The performance characteristics and the potential of the laser-induced fluorescence imaging lidar for monitoring the physiological activities of plants and vegetation are described.  相似文献   

17.
We describe a new procedure for optical pumping that is based on laser-induced fluorescence (LIF). The procedure is demonstrated by optically exciting a sample of Rb85 atoms, which then creates a population imbalance between the ground state hyperfine levels of Rb87 by “LIF depopulation pumping”. Though optical pumping with this technique increases the intensity dependent light-shift coefficient (i.e., ac Stark shift) of the Rb87 0-0 hyperfine transition, it reduces the frequency dependent light-shift coefficient by at least an order of magnitude. Since the stabilization of the diode laser wavelength is a significant challenge in the development of laser-pumped gas-cell atomic clocks, it is anticipated that optical pumping with LIF will be of benefit to atomic clock technology.  相似文献   

18.
Differential absorption lidar (DIAL) measurements are usually made on single compounds by alternately switching the wavelength between on and off a resonance line. The selection of more than two wavelengths is a mathematical necessity for simultaneous measurement of multiple species or for resolving interference effects between a compound of interest and a background gas such as water vapour or carbon dioxide. This is especially true in the mid-IR region, where many hydrocarbon compounds have important spectral features. We present a method for remote measurement of gas mixtures in the mid-IR region based on a newly developed fast-switching, frequency-agile optical parametric oscillator lidar transmitter. A multivariate statistical procedure has also been applied for this system, which combines a genetic algorithm for wavelength selection with a partial least squares method for identifying individual compounds from their combined absorption spectrum. A calibration transfer is performed for compounds of interest using reference spectra from an absorption spectra database. Both indoor absorption cell measurements and outdoor remote range resolved measurements of hydrocarbon mixtures were performed to explore the performance of the method. PACS 42.62 Fi; 42.79 Qx; 02.50 Sk  相似文献   

19.
A new diode-pumped Nd:YAlO3 laser system emitting pulse bursts at 671 nm has made it possible to apply tracer-laser-induced-fluorescence (LIF) techniques for spray diagnostics not only by using model fuels but in real diesel or gasoline fuel sprays. In this work we characterize possible candidates for LIF tracers that can be excited in the wavelength region of 650–680 nm where commercial diesel fuel is transparent. Two fluorescent dyes, Rhodamine 800 and Atto 680, were identified as possible tracers and tested for their relative fluorescence quantum yield and absorption cross section in a diesel fuel environment as well as their behavior at different temperatures. First results of laser-dropsizing experiments with Rhodamine 800 as a fluorescence tracer are presented. PACS 42.62.Fi; 32.50.+d; 42.62.Cf  相似文献   

20.
The results of numerical solution of the lidar equation for Raman scattering of light by molecules of hydrogen sulphide in the direction of 180° under detecting molecules of hydrogen sulfide in the atmosphere with concentration at a level of 1016 cm–3 from a platform in space at heights of the order of hundreds of kilometers in the synchronous photon counting mode have been presented. It is shown that, for such a variant of a lidar and level of concentration of the investigated molecules, the duration of measurement at a wavelength of the laser radiation of 405 nm and altitude range of 100–600 km lies in the range of 0.14–4.9 s. The development of new schemes of lidars opens up additional possibilities for remote detection of low concentrations of hydrogen sulfide molecules from space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号