首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
闫树斌  耿涛  张天才  王军民 《中国物理》2006,15(8):1746-1751
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of ~ 1×10-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of ~ 8×10-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is ~2×107 atoms/s. About 5×106 caesium atoms are recaptured in the UHV MOT.  相似文献   

2.
An atom faucet   总被引:3,自引:0,他引:3  
We present a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap (MOT), a thin laser beam extracts a continuous jet of cold rubidium atoms. The jet that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. We also present a simple three dimensional numerical simulation of the atomic motion in the presence of these multiple saturating laser fields combined with the inhomogeneous magnetic field of the MOT. At a pressure of P Rb87 = 10-8 mbar and with a moderate laser power of 10 mW per beam, we generate a flux Φ = 1.3×108 atoms/s with a mean velocity of 14 m/s and a divergence of 10 mrad. Received 13 January 2001  相似文献   

3.
In a magneto-optical trap (MOT) we are able to simultaneously trap and cool 7Li and Na. We investigated the loading behavior of the cloud of Li atoms in presence of the overlapped cloud of cold Na atoms, and, by blocking the weak repumping beam for Na, compared it with the loading curve for Li atoms only. Out of these loading curves we calculated the collision cross-section of Na on Li to be 10-11 cm 3 /s. Received 11 January 2002 / Received in final form 5 April 2002 Published online 24 September 2002  相似文献   

4.
A two element magneto-optical trap (MOT) for Na and 7Li or 6Li is used to cool and trap each of them separately. A fraction of the cold atoms is maintained in the first 2P3/2 excited state by the cooling laser. These excited state atoms are ionized by laser light in the near-UV region, giving rise to a smaller number of trapped atoms and to different loading parameters. Photoionization cross-sections were derived out of these data. They are in reasonable agreement with data previously obtained using thermal samples and with theoretical predictions. Received 21 March 2001 and Received in final form 3 August 2001  相似文献   

5.
We demonstrate experimentally the continuous and pulsed loading of a slow and cold atomic beam into a magnetic guide. The slow beam is produced using a vapor loaded laser trap, which ensures two-dimensional magneto-optical trapping, as well as cooling by a moving molasses along the third direction. It provides a continuous flux larger than 109 atoms/s with an adjustable mean velocity ranging from 0.3 to 3 m/s, and with longitudinal and transverse temperatures smaller than 100 μK. Up to 3×108 atoms/s are injected into the magnetic guide and subsequently guided over a distance of 40 cm. Received 19 February 2002 Published online 28 June 2002  相似文献   

6.
用吸收法对铯原子磁光阱中冷原子数目的测量   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了吸收法测量冷原子数的原理以及对铯原子气室磁光阱中俘获的冷原子数目的测量过程及结果. 与通常的荧光收集法相比,在原理上与静止二能级原子同共振单模光场作用的模型更加接近,同时大大减小了测量中的误差累积,提高了测量精度. 测得的冷原子数为(8±0.3)×106,同时还利用测得的阱中俘获的稳态冷原子数和磁光阱中冷原子的寿命间接获得了磁光阱的俘获率. 关键词: 激光冷却与俘获 磁光阱 冷原子数目 俘获率  相似文献   

7.
一种测量磁光阱中冷原子密度和温度的新方法   总被引:2,自引:0,他引:2  
报道了对磁光阱中冷铯原子吸收谱的实验观察,由于冷原子的多普勒增宽远小于激光发态超精细分裂,实验观察到三个孤立的吸收峰(Cs,6S1/2,F=4→6P3/2,F=3,4,5,)其吸收系数比为3:7:12,这与相应跃迁振子强度一致。利用吸收信号测量了冷原子云的密度.结果与荧光探测法在10%的精度内符合;用吸收信号测量了冷原子的温度,测量结果与用荧光飞行时间法和释放捕捉法的结果吻合。  相似文献   

8.
王晓佳  冯焱颖  薛洪波  周兆英  张文栋 《中国物理 B》2011,20(12):126701-126701
We demonstrate an experimental setup for the production of a beam source of cold 87Rb atoms. The atoms are extracted from a trapped cold atomic cloud in an unbalanced three-dimensional magneto-optical trap. Via a radiation pressure difference generated by a specially designed leak tunnel along one trapping laser beam, the atoms are pushed out continuously with low velocities and a high flux. The most-probable velocity in the beam is varied from 9 m/s to 19 m/s by varying the detuning of the trapping laser beams in the magneto-optical trap and the flux can be tuned up to 4×109 s-1 by increasing the intensity of the trapping beams. We also present a simple model for describing the dependence of the beam performance on the magneto-optical trap trapping laser intensity and the detuning.  相似文献   

9.
以慢原子束方式进行原子转移的双磁光阱系统   总被引:2,自引:0,他引:2       下载免费PDF全文
建立了一套用于玻色-爱因斯坦凝聚实验的铷原子双磁光阱装置.从低速强源中获得慢原子束,向超高真空磁光阱进行原子转移.低速强源磁光阱与超高真空磁光阱之间可维持3个量级的压强差,超高真空磁光阱的真空度最高可达1×10-9 Pa. 慢原子束的束流通量达1×109/s. 约4×10887Rb原子被装载到超高真空磁光阱中.还讨论了两种典型情况下磁光阱中装载的最大原子数.  相似文献   

10.
杨威  孙大立  周林  王谨  詹明生 《物理学报》2014,63(15):153701-153701
为了制备适于原子干涉仪实验的低温锂原子样品,开展了锂原子的塞曼减速及与磁光阱囚禁相关的实验研究.设计并实现了一种结构紧凑的腔体内冷式多级线圈叠加的塞曼减速器,将速度小于600 m/s的7Li原子减速到60 m/s,磁光阱装载速率为5×108/s,囚禁原子数目1×109个,原子团的最低温度约为220±30μK.研究了光学黏胶中7Li原子的寿命与囚禁光频率失谐量的关系.这些结果为进一步开展7Li原子亚多普勒冷却、光势阱蒸发冷却以及原子干涉仪实验奠定了基础.  相似文献   

11.
介绍采用短程飞行时间吸收谱测量铯原子磁光阱(MOT) 中冷原子温度的基本原理及实验实现.与通常的飞行时间方法不同,采用短程飞行时间吸收谱来测量MOT 中冷原子云的温度.在MOT 区域正下方若干毫米处入射一束圆柱状共振探测光束(实验中对于h=3mm,5mm,8mm的情况均作了研究),释放冷原子云,在其膨胀和自由下落过程中穿过探测光束,即可由光电探测器测得飞行时间吸收谱,由此推得MOT中冷原子的温度. 关键词: 磁光阱 冷原子 飞行时间 短程飞行时间 铯原子  相似文献   

12.
Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064~nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3~s. Thus we provide a system where the atomic qubit can be coherently manipulated.  相似文献   

13.
We transfer cold ^87 Rb atoms from a vapour cell chamber to a spatially separated UHV magneto-optical trap (MOT) with the assistance of a red-detuned optical guiding beam and a normal push beam. Efficient optical guiding of the cold atoms is observed within a small detuning window. A pulsed optical guiding beam enhances the transfer efficiency and hence allows us to collect more atoms in UHV MOT in a shorter time, which is favourable for our experiment of achieving Bose-Einstein condensates (BEC). Besides the easy operation, another advantage of this optical guiding technique is also demonstrated such that slower atomic beams may be efficiently transferred along horizontal direction. This study is a direct application of the optical guiding technique as a powerful tool.  相似文献   

14.
We have demonstrated the experimental realization of a single-beam mini magneto-optical trap of 87Rb atoms, originally designed for a cold atom-clock with coherent population trapping (CPT). Only one beam is used as cooling, trapping and repumping beams rather than the three pairs of orthogonal beams of the standard magneto-optical trap. The core optics, which consists of a modified pyramidal funnel type mirror, a quarter-wave plate and a retroreflect mirror, is installed inside a mini titanium cubic chamber. The vacuum system, rubidium source, magnetic field coils and beam expander are designed in a compact geometry. As many as 1.1 × 107 rubidium atoms are cooled and trapped, and thus the mini trap is ready for the implementation of a novel compact coherent population trapping cold atom-clock.  相似文献   

15.
We report the first magneto-optical trapping of radioactive 135Cs and 137Cs and a promising means for detecting these isotopes at ultra-sensitive levels by coupling a magneto-optical trap (MOT) to a mass separator. A sample containing both isotopes was placed in the source of a mass separator, ionized, mass-separated, and implanted in a Zr foil within the trapping cell. After implantation, atoms were released from the foil by inductive heating and then captured in a MOT that used large-diameter beams and a dry-film-coated cell to achieve high trapping efficiency. Trapped-atom numbers in the case of either isotope ranged from 104 to 107, as determined from the MOT fluorescence signal. Over this trapped-atom range, the MOT fluorescence signal was found to increase linearly with the number of atoms implanted in the foil and without isotopic bias to within 4%. In principle, this method can then provide a measurement of the 137Cs/135Cs ratio accurate to within 4% through the direct ratio of MOT fluorescence signals. The fluorescence signal from stable 133Cs, when implanted and released from the foil, was suppressed relative to MOT signals by more than seven orders of magnitude when the system was tuned to trap 135Cs or 137Cs. When combined with the isotopic selectivity of ≥105 for the mass separator, the overall suppression of 133Cs is expected to exceed 1012. At present our system delivers atoms from sample to MOT with an efficiency of 0.5%, has a trapped-atom detection limit of 4000 atoms, and achieves a sample-detection sensitivity of one million atoms. Received: 23 August 2002 / Published online: 8 January 2003 RID="*" ID="*"Corresponding author. Fax: +1-505/667-0440, E-mail: mdd@lanl.gov  相似文献   

16.
We report on a compact high-efficiency Cs slow atom beam source based on a retro-reflected two-dimensional magneto-optical trap (2D MOT). Employing two laser beams in an angled retro-reflected setup, we achieve 3D MOT loading rates greater than 8?×?109?atoms/s using only 20?mW of total laser power for the source.  相似文献   

17.
We have developed a simple magnetic transport method for the efficient loading of cold atoms into a magnetic trap. Laser-cooled 87Rb atoms in a magneto-optical trap (MOT) are transferred to a quadrupole magnetic trap and they are then transported as far as 50 cm by moving magnetic trap coils with a low excess heating of atoms. A light induced atom desorption technique helps to reduce the collision loss during the magnetic transport. Using this method, we can load cold 87Rb atoms into a magnetic trap in an ultra high vacuum chamber with high efficiency, and we can produce 87Rb condensate atoms. PACS 39.25.+k; 32.80.Pj; 03.75.Pp  相似文献   

18.
We demonstrated laser cooling and trapping of thulium atoms at sub-Doppler temperatures in a magneto-optical trap (MOT). Up to 3 × 106 thulium atoms were trapped in the MOT at temperatures down to 25(5) μK which is approximately 10 times lower than the Doppler limit. The lifetime of atoms in the MOT varied between 0.3–1.5 s and was restricted mostly by optical leaks from the upper cooling level. The lower limit for the leaking rate was estimated to be 22(6) s−1. Due to a big magnetic moment of Tm atoms, a part of them were trapped in a magnetic trap from the quadrupole field of the MOT. We observed about 3 × 104 purely magnetically trapped atoms at temperature of 25 μK with a lifetime in the trap of 0.5 s. Also we set up a “dark” MOT consisting of six crossed hollow beams which increased the number of trapped atoms by a factor of 5 leading to 1.5 × 107 atoms at the expense of higher temperature.  相似文献   

19.
The displacement of Rb atoms in a magneto-optical trap (MOT) caused by the force of a finite time series of counter-propagating frequency modulated light pulse pairs is measured as a function of the chirp of the pulses. The frequency modulated light pulses induced 85Rb 52S1/2 F=3 ↔ 85Rb 52P3/2 F'=2, 3, 4 excitation and de-excitation of the atoms. The result of this excitation de-excitation process is a force causing the acceleration and, consequently, the displacement of the maximum of the spatial distribution of the trap atoms. The time dependence of the populations of the levels of the atom are calculated — including also the 85Rb 52S1/2 F=2 and F'=1 states — as the result of the interaction with the finite train of counter propagating frequency modulated light pulses by the solution of the Bloch equations. As the result of the measurement the interval of the chirp of the frequency modulated light of given intensity where the transitions take place, are determined. The results of the experiment and the expectation on the basis of model calculations are in qualitative agreement.  相似文献   

20.
王杰英  刘贝  刁文婷  靳刚  何军  王军民 《物理学报》2014,63(5):53202-053202
实验中首先通过增大四极磁场梯度、提高背景真空度、缩小冷却俘获激光光束直径的方法获得了磁光阱中单原子的装载.其次,通过减小冷却光失谐量、适当增加其光强、同时使用偏振光谱锁频技术抑制冷却光噪声的方法得到了磁光阱中高信号背景比的单原子荧光信号.此外,通过实时反馈控制磁光阱四极磁场梯度的方法,在实验中实现了单原子98%的装载概率.使用Hamburg Brown-Twiss方案测量了磁光阱中的单原子在连续光激发下所辐射荧光的光子统计特性,得到二阶关联度g(2)(τ=0)=0.09.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号