首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present work, combination of ultraviolet (UV) irradiations (using 8 W UV tube) with ultrasonic (US) irradiations (rated power 1 kW and frequency of 25 kHz) has been investigated for the degradation of phenol at pilot scale of operation. Different modes of operation viz. UV alone, US alone, UV/US, UV/TiO2 (photocatalysis), UV/H2O2, UV/NaCl, UV/US/TiO2 (sonophotocatalysis) and H2O2 assisted sonophotocatalysis have been investigated with an objective of maximizing the extent of phenol degradation. Effect of presence of hydrogen peroxide and sodium chloride at a concentration of 10 g/l and TiO2 over a range of 0.5–2.5 g/l has been investigated. It has been observed that 2.0 g/l of TiO2 is the optimum concentration, beyond which a decrease in the extent of degradation is observed. Maximum extent of degradation of phenol was 37.75% for H2O2 assisted photosonocatalysis at pH of 2. The present work is first of its kind to report the use of combined ultrasonic and UV irradiations at pilot scale operation and obtained results should induce some degree of certainty in proposed industrial applications of sonochemical reactors for wastewater treatment.  相似文献   

2.
The α-Fe2O3/TiO2 bi-functional composites with hierarchical and hollow structures are fabricated through a hydrothermal route. The adsorption performance and photocatalytic activity of the composites towards Pb2+ are investigated in this work. Different adsorption kinetics models and equilibrium models are used to explore the adsorption behavior of hierarchical α-Fe2O3/TiO2 hollow spheres. Experimental data show that adsorption kinetics of the hierarchical α-Fe2O3/TiO2 hollow spheres can be fitted well by the pseudo-second-order model, while the isothermal data can be perfectly described by the Langmuir adsorption model. The maximum adsorption capacity of the hierarchical α-Fe2O3/TiO2 hollow spheres is 32.36 mg g?1. Moreover, the hierarchical α-Fe2O3/TiO2 hollow spheres possess photocatalytic oxidation character under simulated solar light irradiation. The results demonstrate that the hierarchical α-Fe2O3/TiO2 hollow spheres, as effective and cheap materials, can be applied to the removal of heavy metal ions from wastewater.  相似文献   

3.
The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.  相似文献   

4.
In this work, γ-Fe2O3 and TiO2 NTs/γ-Fe2O3 composites with good magnetism and sonocatalytic activity were prepared by a facile polyol method and utilize the principle of isoelectric point method, respectively. The structural and magnetic features of the prepared calcined γ-Fe2O3 and composite catalysts were investigated by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), surface analysis, UV–Vis diffuse reflectance spectra (UV–Vis DRS), vibrating sample magnetometry (VSM) and zeta potential analysis. The effects of calcination temperature on γ-Fe2O3 phase variation, physical properties and sonocatalytic properties were investigated. The porosity, specific surface area, band gap energy and sonocatalytic activity of γ-Fe2O3 were gradually decreased with calcination temperature increased. TiO2 NTs/γ-Fe2O3 with appropriate composition and specific structural features possess synergetic effects such as efficient separation of charge carriers and hydroxyl radicals produced by heterogeneous fenton and fenton-like reactions. This enhanced the sonocatalytic activity for the degradation of Orange G under ultrasonic irradiation. The sonocatalytic reactions obeyed pseudo first-order kinetics. All these information provide insight into the design and development of high-efficiency catalyst for wastewater treatment.  相似文献   

5.
TiO2-biochar (TiO2-BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption analysis. The performance of synthesized TiO2-BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO2-BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO2-BC dosage of 1.5 g/L, RB69 initial concentration of 20 mg/L and ultrasonic power of 300 W. Furthermore, the effect of OH, h+ and O2 scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO2-BC in the sonocatalytic process verified its stability in long-term usage.  相似文献   

6.
In order to reduce the density mismatch between TiO2 and the low dielectric medium and improve the dispersion stability of the electrophoretic particles in the low dielectric medium for electrophoretic display application, polystyrene/titanium dioxide (PS/TiO2) core–shell particles were prepared via in-situ sol–gel method by depositing TiO2 on the PS particle which was positively charged with 2-(methacryloyloxy)ehyl trimethylammonium chloride (DMC). The morphology and average particle size of PS/TiO2 core–shell particles were observed by transmission electron microscopy (TEM), scanning electron microscope (SEM) and particle size analyzer. It was found that density of PS/TiO2 core–shell particles were reduced obviously and the particles can suspend in the low dielectric medium of low density. The PS/TiO2 core–shell particles can endure ultrasonic treatment because of the interaction between TiO2 and PS. Zeta potential and electrophoretic mobility of the fabricated core–shell particles in a low dielectric medium with charge control agent was measured to be −44.3 mV and −6.07 × 10−6 cm2/Vs, respectively, which presents potential in electronic paper application.  相似文献   

7.
A promising approach of ultrasound assisted oxidative desulfurization (UAOD) was studied for deep desulfurization of simulated sulphated turpentine containing dimethyl disulphide (DMDS) as model pollutant. The effect of ultrasound parameters such as power (80–120 W) and duty cycle (50–80%) as well as operating conditions as initial concentration (50–100 ppm), volume (100–300 ml) and temperature (28 °C as ambient condition, 50–70 °C) on the extent of desulfurization have been studied. The effect of addition of various oxidizing agents such as hydrogen peroxide over the range of 3–18 g/L, Fenton reagent by varying FeSO4 loading from 0.75 g/L to 1.75 g/L at constant H2O2 loading and titanium dioxide (loading over the range 1–4 g/L) in the presence of ultrasonic horn have also been investigated at laboratory scale. The addition of oxidizing agents in presence of ultrasound enhanced the extent of DMDS removal. The extent of desulfurization was found to be remarkably low for individual approaches as compared to combination approaches of US/oxidizing agents. The kinetic analysis revealed that oxidation follows first order kinetics. A significant increase in cavitational yield was observed for combination approach of US/H2O2/TiO2 (5.78 × 10−9 g/L) compared to individual ultrasound approach (2.04 × 10−9 g/L). Under best conditions of 120 W power, 70% duty cycle, 50 ppm initial concentration, 15 g/L H2O2 loading and 4 g/L TiO2 loading, 100% desulfurization was obtained at 23.19 Rs/L as the treatment cost. Based on the obtained results it can be concluded that US/H2O2/TiO2 approach is highly efficient desulfurization technique for deep desulfurization of simulated sulphated turpentine.  相似文献   

8.
Degradation of C.I. Direct Black 168 from aqueous solution using Fenton-like reactions combining ultrasound was investigated. In the presence of H2O2, the effect of the heterogeneous catalysts, such as fly ash, kaolinite or diatomaceous earth on the degradation of Direct Black 168 was observed under ultrasound. The fly ash was the most efficient catalyst. It is apparent that ultrasound can prompt the reaction to take place and give in higher degradation. In the combination of ultrasound and fly ash/H2O2, the effect of different system variables namely concentration of the dye, dosage of fly ash, concentration of H2O2, pH of solution and the addition of NaCl were studied. 99.0% removal ratio was achieved at initial concentration 100 mg/L, pH 3.0, and dosage of fly ash 2.0 g/L, as well as 2.94 mM H2O2. NaCl exhibited only a minor effect on the dye removal.  相似文献   

9.
In this study, the impacts of different ultrasonic treatments on TiO2 particles were determined and they were used to manufacture the photoelectrodes of a dye-sensitized solar cell (DSSC). Two methods were used to prepare TiO2 particles directly sonicated by an ultrasonic horn, and TiO2 treated indirectly by an ultrasonic cleaner. TEM, XPS analysis was confirmed that cavitation bubbles generated during ultrasonication resulted in defects on the surface of TiO2 particles, and the defect induced surface activation. To understand the effect of TiO2 surface activation on energy conversion efficiency of DSSC, ultrasonic horn DSSC and ultrasonic cleaner DSSC were prepared. The UV–vis analysis exhibited that the ultrasonic horn DSSC possessed higher dye adsorption when compared to the ultrasonic cleaner DSSC, and the EIS analysis confirmed that the electron mobility was greatly increased in the ultrasonic horn DSSC. The energy conversion efficiency of the ultrasonic horn DSSC was measured to be 3.35%, which is about 45% increase in comparison to that of the non-ultrasonic treated DSSC (2.35%). In addition to this regard, recombination resistance of ultrasonic horn DSSC was calculated to be 450 Ω·cm2, increasing more than two times compared to the non-ultrasonic treated DSSC (200 Ω·cm2). Taken together, these ultrasonic treatments significantly improved the energy conversion efficiency of DSSC, which was not tried in DSSC-related research, and might lead us to develop more efficient practical route in the manufacturing of DSSC.  相似文献   

10.
以钛酸四正丁酯和硝酸镧为原料, 以P123为模板剂,采用模板法合成了La掺杂型介孔TiO2光催化剂, 借助TGA-DSC、BET、XRD及UV-Vis等测试手段对样品进行了表征,并以苯酚为模型污染物考察了镧掺杂量对样品光催化活性的影响.结果表明: La掺杂介孔TiO2光催化剂孔径分布较均匀(~10 nm),比表面积可达165 m2/g.与纯介孔TiO2相比,经掺杂改性后的样品在紫外光区及可见光区的吸收显著增强,对光具有更高的利用率,La掺杂可显著提高介孔TiO2的光催化活性.  相似文献   

11.
In this work, we demonstrate a novel synthesis of synthetic rutile from high titanium slag. This rutile TiO2 was obtained by a simple one-step microwave roasting route. The influence of microwave roasting temperature and duration on the phase transformation of high titanium slag has been assessed. X-ray diffraction (XRD) results indicate that the intensity of anosovite (Fe3Ti3O10) phase, which were the major phase of high titanium slag of carbon thermal reduction of ilmenite ores, decreased rapidly while the peaks for rutile TiO2 phase increased with increase in the microwave roasting temperature. The scanning electron microscope (SEM) images revealed formation and the particle-size distribution of rutile TiO2 phase. Based on XRD and SEM analysis, confirmed the dependence of phase structure, composition and crystallite size on the process conditions of microwave roasting.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(5):1714-1721
In this study, nickle/iron (Ni/Fe) nanoparticles were synthesized by liquid phase reductive method in the presence of 20 kHz ultrasonic irradiation to improve nanoparticles’ disparity and avoid agglomeration. The characterized results showed that this method has obviously modified most of the particles in term of sizes and specific surface areas. Meanwhile, the improved nanoscale Ni/Fe particles were employed for the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) as a function of some influential factors (Ni content, Ni/Fe nanoparticles dosage, reaction temperature and initial pH values) and degradation path. Experimental results showed that 2,4-DCP was first adsorbed by Ni/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The application of ultrasonic irradiation for Ni/Fe nanoparticles synthesis was found to significantly enhance the removal efficiency of 2,4-DCP. Consequently, the phenol production rates increased from 68% (in the absence of ultrasonic irradiation) to 87% (in the presence of ultrasonic irradiation) within 180 min. Nearly 96% of 2,4-DCP was removed after 300 min reaction with these optimized conditions: Ni content over Fe0 3 wt%, initial 2,4-DCP concentration 20 mg L−1, Ni/Fe dosage 3 g L−1, initial pH value 3.0, and reaction temperature 25 °C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0737 min−1. This study suggested that the presence of ultrasonic irradiation in the synthesis of nanoscale Ni/Fe particles could be a promising technique to enhance nanoparticle’s disparity and avoid agglomeration.  相似文献   

13.
A series of CuCe-modified TiO2-ZrO2 catalysts synthesized by stepwise impregnation method and ultrasonic-assisted impregnation method were investigated to research the removal of NO in the simulated flue gas. Results showed that the CuCe/TiO2-ZrO2 catalyst prepared by ultrasonic-assisted impregnation method exhibited the superior NO conversion, in which higher than 85% NO was degraded at the temperature range of 250–400 °C and the highest NO conversion of 94% at 350 °C. It proves that ultrasonic treatment can markedly improve the performance of catalysts. The effect of ultrasonic enhancement on CuCe/TiO2-ZrO2 was comprehensively studied through being characterized by physicochemical characterization. Results reveal that the ultrasonic cavitation effect improves the distribution of active species and the synergistic interaction between Cu with Ce components (Cu+ + Ce4+ ↔ Cu2+ + Ce3+) on the catalysts significantly, thus resulting in better dispersibility as well as a higher ratio of Cu2+ and Ce3+ of the catalysts. Moreover, it was found that the CuCe/TiO2-ZrO2 catalyst prepared by the ultrasonic-assisted impregnation method represented a higher degree of ultrafine metal particles and evenness. The above results were described with the generalized dimension and singularity spectra in multifractal analysis and validated by the comparative test. Therefore, it can be concluded that ultrasonic treatment facilitates the particle size and distribution of active sites on the catalysts.  相似文献   

14.
The effect of thickness of TiO2 coating on synergistic photocatalytic activity of TiO2 (anatase)/α-Fe2O3/glass thin films as photocatalysts for degradation of Escherichia coli bacteria in a low-concentration H2O2 solution and under visible light irradiation was investigated. Nanograined α-Fe2O3 films with optical band-gap of 2.06 eV were fabricated by post-annealing of thermal evaporated iron oxide thin films at 400 °C in air. Increase in thickness of the Fe2O3 thin film (here, up to 200 nm) resulted in a slight reduction of the optical band-gap energy and an increase in the photoinactivation of the bacteria. Sol-gel TiO2 coatings were deposited on the α-Fe2O3 (200 nm)/glass films, and then, they were annealed at 400 °C in air for crystallization of the TiO2 and formation of TiO2/Fe2O3 heterojunction. For the TiO2 coatings with thicknesses ≤50 nm, the antibacterial activity of the TiO2/α-Fe2O3 (200 nm) was found to be better than the activity of the bare α-Fe2O3 film. The optimum thickness of the TiO2 coating was found to be 10 nm, resulting in about 70 and 250% improvement in visible light photo-induced antibacterial activity of the TiO2/α-Fe2O3 thin film as compared to the corresponding activity of the bare α-Fe2O3 and TiO2 thin films, respectively. The improvement in the photoinactivation of bacteria on surface of TiO2/α-Fe2O3 was assigned to formation of Ti-O-Fe bond at the interface.  相似文献   

15.
Esam AlArfaj 《哲学杂志》2016,96(14):1386-1398
In this article, titanium dioxide and silver nanostructures were deposited on glass substrates using modified sol–gel methods and dip-coating technique. The films were characterised chemically and physically using different techniques (TLC, UV–Vis and XRD) and tested for environmental applications regarding degradation of aromatic hydrocarbons. The photocatalytic activity of the TiO2 nanostructures is tested with different small concentrations of phenol in water and reaction mechanisms discussed. Considerable enhancement is observed in the photodegradation activity of Ag-modified (3 wt.%) TiO2 compared to unmodified TiO2 nanostructures for phenol concentrations within the pseudo-first-order Langmuir–Hinshelwood (LH) model for reaction kinetics. The pseudo-first-order global degradation rate constant increased from <0.005 min?1 for TiO2 to 0.013 min?1 for 3 mol% Ag-modified TiO2. The enhancement is attributed to the incorporation of Ag which promotes the generation of reactive oxygen species and increases the carrier recombination life-time. In addition, Ag has been observed to extend the absorption to the visible region by its surface plasmon resonances and to suppress the anatase–rutile phase transformation. Moreover, TiO2 grain size prepared was found to be 10 nm which maximises the active surface area. For phenol initial concentrations as low as 0.0002 M, saturation trend in the degradation process occurred at 0.00014 M and the reaction rate can be fitted with half-order LH kinetics.  相似文献   

16.
In this paper, a high-performance silver-doped titanium dioxide (Ag/TiO2) humidity sensor was synthesized using a hydrothermal synthesis method for respiratory monitoring. The sensing mechanism was studied by the first principles of density functional theory (DFT). Calculations show that the doping of Ag+ ions increases the adsorption energy of TiO2 to water molecules. Furthermore, the Ti–O bond in TiO2 is broken due to the doping of Ag+ ions, which promotes the generation of Ti3+ defects. Experiments show that the doping of Ag+ ions can increase the hydroxide groups, Ti3+ defects and oxygen vacancies on the surface of TiO2, thus effectively improving the responsivity, linearity and hysteresis of the TiO2 humidity sensor. Compared to TiO2, the resistance of the Ag/TiO2 (0.5 mM) humidity sensor reaches 4.5 orders of magnitude with a high response of 39707.1, maximum hysteresis rate of 4.6%, response/recovery time of 31 s/15 s and the best linearity in a range of 11%–95% RH. In addition, the Ag/TiO2 humidity sensor has been successfully used to detect different modes of respiration and determine the respiratory rate under different respiratory states. Significantly, this work demonstrates potential application value in human healthcare and activities monitoring.  相似文献   

17.
《Ultrasonics sonochemistry》2014,21(6):1964-1968
Through an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8–12 nm in diameter. The photocatalytic activity of TiO2/WO3 nanoparticles was tested for the degradation of a wastewater containing methylene blue (MB) under visible light illumination. The TiO2/WO3 nanoparticles exhibits a higher degradation rate constant (6.72 × 10−4 s−1) than bare TiO2 nanoparticles (1.72 × 10−4 s−1) under similar experimental conditions.  相似文献   

18.
Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3 s of HIFU irradiation with 20, 32, 55 and 73 W cm−2 intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3 s, 73 W cm−2) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU + TiO2 in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU + TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU + TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future.  相似文献   

19.
In this paper, data concerning the effect of pH on the morphology of Ag–TiO2 nanocomposite during photodeposition of Ag on TiO2 nanoparticles is reported. TiO2 nanoparticles prepared by sol–gel method were coated with Ag by photodeposition from an aqueous solution of AgNO3 at various pH levels ranging from 1 to 10 in a titania sol, under UV light. The as-prepared nanocomposite particles were characterized by UV–vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and N2 adsorption/desorption method at liquid nitrogen temperature (−196 °C) from Brunauer–Emmett–Teller (BET) measurements. It is shown that at a Ag loading of 1.25 wt.% on TiO2, a high-surface area nanocomposite morphology corresponding to an average of one Ag nanoparticle per titania nanoparticle was achieved. The diameter of the titania crystallites/particles were in the range of 10–20 nm while the size of Ag particles attached to the larger titania particles were 3 ± 1 nm as deduced from crystallite size by XRD and particle size by TEM. Ag recovery by photo harvesting from the solution was nearly 100%. TEM micrographs revealed that Ag-coated TiO2 nanoparticles showed a sharp increase in the degree of agglomeration for nanocomposites prepared at basic pH values, with a corresponding sharp decrease in BET surface area especially at pH > 9. The BET surface area of the Ag–TiO2 nanoparticles was nearly constant at around a value of 140 m2 g−1 at all pH from 1–8 with an anomalous maximum of 164 m2 g−1 when prepared from a sol at pH of 4, and a sharp decrease to 78 m2 g−1 at pH of 10.  相似文献   

20.
Copper-based coatings are known for their high antibacterial activity. In this study, nanocomposite Cu–Sn–TiO2 coatings were obtained by electrodeposition from an oxalic acid bath additionally containing 4 g/dm3 TiO2 with mechanical and ultrasonic agitation. Ultrasound treatment was performed at 26 kHz frequency and 32 W/dm3 power. The influence of agitation mode and the current load on the inclusion and distribution of the TiO2 phase in the Cu–Sn metallic matrix were evaluated. Results indicated that ultrasonic agitation decreases agglomeration of TiO2 particles and allows for the deposition of dense Cu–Sn–TiO2 nanocomposites. It is shown that nanocomposite Cu–Sn–TiO2 coatings formed by ultrasonic-assisted electrodeposition exhibit excellent antimicrobial properties against E. coli bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号