首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An overall comparative study was carried out on Li-doped, F-doped, and Li-F-codoped TiO2 powders in order to elucidate the roles of Li+ and F ions in photocatalyst. The characteristic data were based on the analysis of XRD, XPS, and PL spectra. The effects of atomic ratio of Li/Ti and F/Ti on the photocatalytic activity were also investigated. As the results, Li doping accelerated the phase formation of rutile in lower temperature while F doping prevented the phase transition from anatase to rutile. Li doping inducted a large amount of OOH on the surface of TiO2, while F doping consumed much of OOH. Li+ ions acted as the roles of recombination center of electron-hole pairs while F doping could restrain the recombination of electron-hole pairs on the center of Li+ ions. The roles of Li+ and F ions were also confirmed in the experimental section, where the photocatalytic activity of TiO2 was improved greatly by synergistic reaction of Li+ and F ions.  相似文献   

2.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

3.
Shu  Yun  Dai  Tao  Ye  Qiuyu  Jin  Dangqin  Xu  Qin  Hu  Xiaoya 《Journal of fluorescence》2021,31(6):1947-1957

Using two-dimensional (2D) nickel-based metal organic framework (Ni-MOF) nanosheets as a matrix, Eu3+ and Ag+ were incorporated to synthesize Ag/Eu@Ni-MOF with double luminescence centers of Eu3+ ion (615 nm) and organic ligand (524 nm). And a ratiometric luminescence sensor is constructed based on Ag/Eu@Ni-MOF for sensitive detection of biothiols in aqueous solutions. The dual-emissive fluorescence properties can be tuned by changing the amounts of Ag+ ions doping. The results of temperature and pH effects on the fluorescence of Ag/Eu@Ni-MOF indicates that the Ag/Eu@Ni-MOF is a temperature-sensitive material and the fluorescence of Ag/Eu@Ni-MOF can keep stable over a wide pH range. Due to the binding of -SH in cysteine (Cys) and glutathione (GSH) with Ag+, the ligand luminescence was significantly inhibited by weakening the Ag?+?influence on the energy transfer process in the MOFs. Therefore, ratiometric fluorescent sensing of biomolecular thiols was realized based on the dual-emission Ag/Eu@Ni-MOF. More importantly, the fluorescence color change can be observed with naked eyes to realize visual detection. The ratiometric fluorescent sensor exhibits high performance for Cys and GSH detection with a wide linear range of 5-250 µM and a relatively low detection limit of 0.20 µM and 0.17 µM, respectively. Furthermore, the biothiols content in human serum was determined with satisfactory results. It proves the Ni-MOF nanosheets can be used as a stable matrix for construction luminescent MOFs for the first time, and validate the great potential of Ag/Eu@Ni-MOF as a ratiometric fluorescent probe for point-of-care testing (POCT) in disease diagnosis.

  相似文献   

4.
TiO2 thin film synthesized by the RF sputtering method has been implanted by 120 keV Ag? ion with different doses (3?×?1014, 1?×?1015, 3?×?1015, 1?×?1016 and 3?×?1016 ions/cm2). Further, these were characterized by Rutherford back Scattering, XRD, X-ray photoelectron spectroscopy (XPS), UV–visible and fluorescence spectroscopy. Here we reported that after implantation, localized surface Plasmon resonance has been observed for the fluence 3?×?1016 ions/cm2, which was due to the formation of silver nanoparticles. Ag is in metallic form in the matrix of TiO2, which is very interestingly as oxidation of Ag was reported after implantation. Also, we have observed the interaction between nanoparticles of Ag and TiO2, which results in an increasing intensity in lower charge states (Ti3+) of Ti. This interaction is supported by XPS and fluorescence spectroscopy, which can help improve photo catalysis and antibacterial properties.  相似文献   

5.
Lead-free piezoelectric ceramics Bi0.5(Na1-x-yKxAgy)0.5TiO3 [BNKAT(x/y)] have been synthesized by the mixed oxide method. The effects of the amount of K+ and Ag+ on the electrical properties were examined. X-ray diffraction patterns indicate that K+ and Ag+ ions partially substitute for the Na+ ions in Bi0.5Na0.5TiO3 and form a solid solution during sintering. At room temperature, the ceramics exhibit good performances with piezoelectric constant d33=189 pC/N, electromechanical coupling factor kp=35.0%, remanent polarization Pr=39.5 μC/cm2, and coercive field Ec=3.3 kV/mm, respectively. The curves of the dielectric constant εr and loss tangent tan δ versus temperature show that the transition temperature from ferroelectric to anti-ferroelectric phase decreases with increasing the K+ content for the compositions researched. The dependencies of kp and polarization versus electric (P–E) hysteresis loops on temperature reveal that the depolarization temperature Td of BNKAT(0.15/0.015) ceramics, which have good piezoelectric properties (d33=134 pC/N, kp=32.5%) and strong ferroelectricity (Pr=39.5 μC/cm2, Ec=4.1 kV/mm) at room temperature, is above 160 °C. PACS 77.22.-d; 77.65.Bn; 77.80.Bh; 77.80.Dj; 77.84.Dy  相似文献   

6.
A novel sol-gel/laser-induced technique (SGLIT) has been developed to form nanocrystalline titanium dioxide (TiO2) based thin films with an improved antibacterial performance. TiO2 precursor films loaded with W+6 and Ag+2 ions (W–TiO2, Ag–TiO2) were prepared separately by sol-gel method and spin-coated on microscopic glass slides. As-dried films were subjected to KrF excimer laser pulses at optimized parameters to generate mesoporous anatase and rutile phases at room temperature. The anatase phase was obtained after irradiation with 10 laser pulses only at 75–85 mJ/cm2 fluence in W–TiO2 films. However, higher number of laser pulses and higher W+6 content favored the formation of rutile. Whereas Ag–TiO2 films exhibited anatase up to 200 laser pulses at the same fluence. The films were characterized by using XRD, FEG-SEM, TEM and UV-Vis spectrophotometer to investigate the crystallographic structure, phase transformation, surface morphology, film thickness and the optical properties. A crystallite size of approximately 20 nm was achieved from the anatase prepared by SGLIT. The films exhibited an enhanced antibacterial function against E-Coli cells under the UV excitation.  相似文献   

7.
The silver nanoparticles (Ag NPs) have been immobilized onto silica microspheres through the adsorption and subsequent reduction of Ag+ ions on the surfaces of the silica microspheres. The neat silica microspheres that acted as the core materials were prepared through sol–gel processing; their surfaces were then functionalized using 3-mercaptopropyltrimethoxysilane (MPTMS). The major aims of this study were to immobilize differently sized Ag particles onto the silica microspheres and to understand the mechanism of formation of the Ag nano-coatings through the self-assembly/adsorption behavior of Ag NPs/Ag+ ions on the silica spheres. The obtained Ag NP/silica microsphere conglomerates were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). Their electromagnetic wave shielding effectiveness were also tested and studied. The average particle size of the obtained Ag NPs on the silica microsphere was found that could be controllable (from 2.9 to 51.5 nm) by adjusting the ratio of MPTMS/TEOS and the amount of AgNO3.  相似文献   

8.
This study presents a two-step synthesis of nanoparticles and the stabilization process of Ag ions in the matrix of NaCl nanocrystals. Ag+ ions are incorporated to NaCl with a new and attractive method that can be easily used for the different types of alkaline halides. The nanoparticles with predominant size found between 10 and 15 nm were stabilized on the surface and/or interior of NaCl nanocrystals using, in the first stages, the ionic-exchange property of zeolite A4. The optical properties of the materials were characterized through optical absorption, leading to well defined absorption bands located in the wave length values between 217–275 nm and 350–770 nm approximately, for Ag+ and AgNp, respectively. The antibacterial property of Ag ions and nanoparticles stabilized in NaCl was analyzed against gram-negative Escherichia Coli and Klebsiella bacteria. In order to quantify the antibacterial effect of Ag ions and nanoparticles the inhibition ratio was used as a parameter on the bacteria colonies grown in culture medium by conventional methods. Ag+ ions that were stabilized in NaCl nanocrystals show a mayor inhibition ratio in contact with Klebsiella bacteria, conversely Ag nanoparticles showed better results in contact with E. coli.  相似文献   

9.
Nanostructured nickel ferrites (NiFe2O4) were prepared by doping with Ti4+ ions using solid-state reaction route. Lowest grain size of 55 nm was achieved in the specimens with 20 mole% TiO2 doping. Magnetization in the specimens decreases with decreasing grain sizes. Lower volume fractions of ferrite phase due to dissociation of the magnetic phase into smaller particles by the disruption of super exchange interaction by the titanium substitution results a decrease in magnetizations. Coercivity showed an increasing trend. This was explained as arising due to multidomain/monodomain magnetic behavior of magnetic nanoparticles. Small polaron hopping conduction between Fe2+ and Fe3+ sites controls the dc electrical properties of the specimens. The presence of an interfacial amorphous phase between the sites is evident from Mott's analysis. Specimens containing 10 mole or more TiO2 and sintered at 1350 °C contain NiTiO3 as a secondary phase and show unusual dc conductivity.  相似文献   

10.
Electron paramagnetic resonance (EPR) is used to investigate the effects of ionizing radiation on Ag-doped lithium tetraborate (Li2B4O7) crystals. Two similar, yet distinct, trapped-hole centers (Ag2+ ions substituting for Li+ ions) are produced by 60 kV x rays. One Ag2+ ion, labeled Center A, has no nearby defects and the other Ag2+ ion, labeled Center B, has a neighboring impurity which is most likely a Ag+ ion substituting for a Li+ ion. The production and thermal decay properties of the two Ag2+ ions are described and their g matrices and 107Ag and 109Ag hyperfine matrices are obtained from the EPR angular dependences. The principal values of the g matrices are similar for the two centers, but the hyperfine principal values differ significantly (Center B has smaller values than Center A). There are also differences in the directions of the principal axes for the two centers. Together, these results imply (1) that the unpaired spin is less localized for Center B and (2) that the ground-state positions of the neighboring oxygen ions are different for Centers A and B. This explains why the peaks of the Ag2+ charge-transfer photoluminescence bands associated with Centers A and B occur at different wavelengths (502 and 725 nm, respectively). An isochronal pulsed thermal anneal shows that these radiation-induced Ag2+ ions serve as the recombination site for the intense thermoluminescence peak observed near 152 °C.  相似文献   

11.
Field evaporation of silver and field desorption of silver surface compounds were investigated by analysing positive ions with a mass spectrometer. In particular, the well known adsorption states of oxygen, and further the interactions of H2O, NH3, H2, CO and CH4 were measured in the field ion mass spectrometer under steady state fields of > 0.1 V/Å with a sensitivity of < 0.1 ions s?1 and at temperatures between 80 °K and 425 °K. Although oxygen is usually chemisorbed at Ag surfaces, no AgO+, AgO+2 or other Ag-O compounds could be detected as positive ions, Ag+ and O2+ are the only observed ions at best image fields in oxygen up to fields of field evaporation of Ag+(≈ 2.2 V/Å). Even after the actual adsorption of oxygen with zero-field (6 × 105 Langmuir at 10?3 Torr) at 323 °K and 473 °K and subsequent application of the desorption field at 210°K no silver-oxygen compounds were found in positive ionic form. Small quantities of AgO+ and AgO+2 were only formed — besides Ag(H2O)x+ complexes — if atomic oxygen was supplied by the field induced dissociation of water.Gases which do not adsorb on silver under zero-field conditions (H2, CO, CH4, N2) yield the ions Ag(H2)n, Ag(CO)n+, n=1, 2; AgCH4+, AgN2+. The situation with H2O and NH3 is more complicated: Molecular ions [Ag(H2O)n]+·mH2O, n=1,…, 4, m=1,…, 8 and [Ag(NH3)n]+·mNH3, n=1, 2, m=1,…, 6 are found besides Ag+.From the temperature and field dependence conclusions are drawn about the mechanisms of evaporation and formation of ionic surface complexes. The activation energies of evaporation of Ag+ are found to depend on the square root of the field strength. In general, the generation of surface compounds can be described by field induced reactions rather than usual gas adsorption.  相似文献   

12.
Wang Y  Geng F  Xu H  Qu P  Zhou X  Xu M 《Journal of fluorescence》2012,22(3):925-929
A novel fluorescent Ag+ sensor was developed based on the label-free silver (I) specific oligonucleotide (SSO) and Thioflavine T (ThT) monomer-excimer switch. C-rich SSO which contain C-C mismatched base pairs can selectively bind to Ag+ ions and the formed duplexes which constructed by C-Ag+-C structure are thermally stabilized without largely altering the double helical structure. ThT give very weak fluorescent in bulk solution and/or in the presence of SSO. However ThT shows high fluorescence in the presence of SSO and Ag+ at the same time mainly because ThT excimer, which has the high quantum yield, formed and stabilized in the minor or major groove. Based on the discovery, we developed the novel Ag+ sensor. Under the optimum condition, the selectivity of this system for Ag+ over other metal ions in aqueous solution is remarkably high, and Ag+ can be quantified over the dynamic range of 30–450 nM, with a limit of detection of ~16 nM and a linear correlation coefficient of 0.995.  相似文献   

13.
Mn doped TiO2 nanoparticles are synthesized by sol–gel method. Incorporation of Mn shifts the diffraction peak of TiO2 to lower angle. The position and width of the Raman peak and photoluminescence intensity of the doped nanoparticles varies with oxygen vacancy and Mn doping level. The electron spin resonance spectra of the Mn doped TiO2 show peaks at g = 1.99 and 4.39, characteristic of Mn2+ state. Reduction in the emission intensity, on Mn doping, is owing to the increase of nonradiative oxygen vacancy centers. Mn doped TiO2, with 2% Mn, shows ferromagnetic ordering at low applied field. Paramagnetic contribution increases as Mn loading increases to 4% and 6%. Temperature dependent magnetic measurement shows a small kink in the ZFC curve at about 40 K, characteristic of Mn3O4. The ferromagnetic ordering is possibly due to the interaction of the neighboring Mn2+ ions via oxygen vacancy (F+ center). Increase in Mn concentration increases the fraction of Mn3O4 phase and thereby increases the paramagnetic ordering.  相似文献   

14.
Arrays of Ag/Cu alloy nanowires embedded in anodic alumina membranes (AAMs) were synthesized by directly electrodepositing from a mixing electrolyte solution containing Ag+ and Cu2+ ions. Manipulations of optical properties of the resulting samples were successfully achieved by tuning the molar ratio of Ag+ and Cu2+ ions in the starting materials. When the ratio is less than 2:20, two surface plasma resonance (SPR) peaks corresponding to Ag and Cu appear, respectively. After annealing treatment, the SPR peak corresponding to Cu disappears, and that of Ag presents a red shift. Furthermore, this red shift can be up to 85 nm when the molar ratio of Ag+ and Cu2+ reduce to 1:20, which is attributed to the transferable electrons from Cu atoms.  相似文献   

15.
For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag+} in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag+} values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag+} ≤ 9.2.  相似文献   

16.
In this paper we present the photofragmentation spectra of mass-selected positive titanium oxide cluster ions Ti x O y +. The clusters are generated by the combination of laser ablation of a titanium target and the supersonic nozzle expansion of oxygen and are detected by time-of-flight mass spectrometry. Small clusters are mass-selected and photodissociated at a wavelength of 308 nm. The recorded photofragmentation spectra indicate that for all parent clusters the main fragment is TiO+ and, in some cases, Ti2O3 + is also observed. This is consistent with the assumption that small Ti x O y + clusters are built from a TiO+ core with TiO2 building blocks.  相似文献   

17.
Ag-doping TiO2 composite nanotubes (Ag-TNTs) were synthesized by alkaline fusion followed by hydrothermal treatment. The microstructure and morphology of the materials were characterized by XRD, TEM, XPS, SPS (surface photovoltage spectroscopy), FISPS (electric field-induced surface photovoltage spectroscopy) and Raman spectroscopy. First-principles calculations based on density-functional theory (DFT) showed the formation of several impurity levels near the top of the valence band in the band gap (Eg) of rutile TiO2 due to Ag doping. A “double junction” is proposed, involving a Schottky junction and p–n junction (denoted as “Ag-p–n junction”) occurring between the Ag particles and the nanotube surface, as well as forming inside TiO2 nanotubes, respectively. The strongly built-in electric field of the junctions promotes the separation of photo-holes and photoelectrons, enhancing the photocatalytic efficiency. XRD results indicated that the composite Ag-TNTs exist as a mixture of anatase and rutile phases. XPS results showed that Ti4+ is the primary state of Ti. Raman spectral analysis of Ag-TNTs revealed the presence of a new peak at 271 cm−1. The red-shift of the absorption light wavelength of Ag-TNTs was 0.16 eV (20 nm) due to a considerable narrowing of Eg by the existing impurity levels.  相似文献   

18.
The optical properties of silver species in various oxidation and aggregation states and of tin centers in melt-quenched phosphate glasses have been assessed by optical absorption and photoluminescence (PL) spectroscopy. Glasses containing silver and tin, or either dopant, were studied. Emission and excitation spectra along with time-resolved and temperature-dependent PL measurements were employed in elucidating the different emitting centers observed and investigating on their interactions. In regard to silver, the data suggests the presence of luminescent single Ag+ ions, Ag+-Ag+ and Ag+-Ag0 pairs, and nonluminescent Ag nanoparticles (NPs), where Ag+-Ag0→Ag+-Ag+ energy transfer is indicated. Tin optical centers appear as twofold-coordinated Sn centers displaying PL around 400 nm ascribed to triplet-to-singlet electronic transitions. The optically active silver centers were observed in glasses where 8 mol% of both Ag2O and SnO, and 4 mol% of Ag2O were added. Heat treatment (HT) of the glass with the high concentration of silver and tin leads to chemical reduction of ionic silver species resulting in a large volume fraction of silver NPs and the vanishing of silver PL features. Further characterization of such heat-treated glass by transmission electron microscopy and X-ray photoelectron spectroscopy appears consistent with silver being present mainly in nonoxidized form after HT. On the other hand, HT of the glass containing only silver results in the quenching of Ag+-Ag0 pairs emission that is ascribed to nonradiative energy transfer to Ag NPs due to the positioning of the pairs near the surface of NPs during HT. In this context, an important finding is that a faster relaxation was observed for this nanocomposite in relation to a heat-treated glass containing both silver and tin (no silver pairs) as revealed by degenerate four-wave mixing spectroscopy. Such result is attributed to Ag NP→Ag+-Ag0 plasmon resonance energy transfer. The data thus indicates that energy transfer between Ag+-Ag0 pairs and NPs is bi-directional.  相似文献   

19.
The surface electric property of Cu2O microcrystal affects the interaction of facets with substance in the aqueous solution, and hence plays a key role in determining the photocatalytic activity. In this paper, the capability of Cu2O microcrystals with exclusive {111}, {110} or both lattice surfaces in reducing Ag+ to Ag0 were investigated. Ag particles selectively deposited on {111} surfaces of Cu2O, while not on {110} surfaces. The different behaviors of the two surfaces are mainly attributed to their different electric properties: negatively-charged {111} surfaces absorb Ag+ ions while positively-charged {110} surfaces repel them. Raman scattering of Cu2O {111} surfaces was enhanced by the photo-deposition of Ag particles.  相似文献   

20.
We reported the role of A-site modification on the structural, ferroelectric, optical and electrical field-induced strain properties of Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 lead-free piezoceramics. The Li+ ions with concentration from 0 to 5 mol% were used to substitute at A-site. There was no phase transition when Li+ ions was added up to 5 mol%. The electric field-induced strain (Smax/Emax) values increased from 600 to 643 pm/V for 2 mol% Li+-added which results from distortion both rhombohedral and tetragonal phase structures. The band gap reduced from 2.88 to 2.68 eV and the saturation polarization decreased from 46.2 to 26.1 μC/cm2 when Li+ ions concentration increased from 0 to 5 mol% respectively. We expect that this work could be helpful for further understanding the role of A-site dopants in comparison with B-site modification in lead-free Bi0.5(Na,K)0.5TiO3-based ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号