首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
不同沙粒底面下气泡脉动特性实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张阿漫  肖巍  王诗平  程潇欧 《物理学报》2013,62(1):14703-014703
通过高速摄影系统对电火花气泡与不同沙粒底面间的相互作用进行了实验研究,并改变气泡与沙粒底面之间的距离.实验结果表明:气泡在与沙粒底面的相互作用中会产生两种明显不同的现象,即形成与近刚性壁面类似的气泡射流以及“蘑菇状”气泡,“蘑菇状”气泡撕裂形成两个气泡,随后产生两个反方向的沿轴线方向的射流.沙粒底面边界具有刚性与弹性两种特征.另外,随着气泡与沙粒底面之间的距离d的增大,气泡脉动周期先增大然后减小,存在气泡脉动周期峰值.对于不同的沙粒底面边界,出现气泡脉动周期峰值的距离d随着沙底粒径的增大而越小.  相似文献   

2.
The dynamics of a micrometer-sized bubble pair in water near a rigid boundary under standing ultrasonic wave excitation is investigated in this study. The viscous effect in the boundary layer at the air-water interface is considered following the viscous correction model. The evolution of the bubble surface at the collapsing stage of the bubble pair is presented for different parameter sets. The field pressure near the rigid boundary, which is induced by the oscillating bubble pair, and the high-speed water jet at the collapse stage, form the main focus of the analysis. This reveals that a horizontal configuration of the bubble pair retards the strength of the bubble jet towards the boundary, whilst a vertical configuration, especially with differently-sized bubbles, can enhance the bubble collapse. This study may help to understand the interaction of multiple bubbles in an acoustic field and its application to surface cleaning.  相似文献   

3.
超声场下刚性界面附近溃灭空化气泡的速度分析   总被引:3,自引:0,他引:3       下载免费PDF全文
郭策  祝锡晶  王建青  叶林征 《物理学报》2016,65(4):44304-044304
为了揭示刚性界面附近气泡空化参数与微射流的相互关系, 从两气泡控制方程出发, 利用镜像原理, 建立了考虑刚性壁面作用的空化泡动力学模型. 数值对比了刚性界面与自由界面下气泡的运动特性, 并分析了气泡初始半径、气泡到固壁面的距离、声压幅值和超声频率对气泡溃灭的影响. 在此基础上, 建立了气泡溃灭速度和微射流的相互关系. 结果表明: 刚性界面对气泡振动主要起到抑制作用; 气泡溃灭的剧烈程度随气泡初始半径和超声频率的增加而降低, 随着气泡到固壁面距离的增加而增加; 声压幅值存在最优值, 固壁面附近的气泡在该最优值下气泡溃灭最为剧烈; 通过研究气泡溃灭速度和微射流的关系发现, 调节气泡溃灭速度可以达到间接控制微射流的目的.  相似文献   

4.
基于边界元法的近平板圆孔气泡动力学行为研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘云龙  张阿漫  王诗平  田昭丽 《物理学报》2013,62(14):144703-144703
研究了带有圆孔的平板附近气泡动力学特性. 基于不可压缩势流理论, 建立了平板圆形破口附近气泡运动数值模型, 并针对气泡初始位置距离破口很近而导致计算结果发散的数值缺陷, 采用气泡壁和壁面融合的方法, 将流场分离为两个半无限域问题进行求解, 实现了在不同无量纲参数范围内的数值模拟, 数值结果与实验结果符合良好. 通过对圆孔附近气泡运动特性的研究发现, 圆孔对气泡的影响基本与壁面相反, 在膨胀阶段对气泡产生腔吸作用, 收缩阶段产生排斥, 在特定的工况下会产生对射流现象. 最后分析了气泡壁与壁面融合, 流场分离后的气泡动态特性以及各工况参数对其影响规律. 关键词: 气泡 边界元 射流 圆孔  相似文献   

5.
The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received inereasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan-Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young-Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.  相似文献   

6.
李帅  张阿漫 《物理学报》2014,63(5):54705-054705
本文针对毫米量级的上浮气泡在壁面处的弹跳现象进行数值研究.基于势流方法求解气泡的运动,同时考虑气泡的表面张力作用.在伯努利方程中,对气泡与壁面之间水膜中因黏性引起的压力梯度进行修正,开发相应的计算程序,计算值与实验值符合良好.从气泡弹跳的基本现象入手,研究了特征参数对气泡弹跳过程的动态特性以及最终平衡形态的影响.发现随着泡在撞击壁面之前上浮距离增大,气泡回弹距离和弹跳周期增加,但是当上浮距离增加到一定程度后将不会影响气泡的弹跳特性;表面张力是影响气泡弹跳特性的重要因素,气泡的弹跳周期随其增大逐渐减小,但回弹距离却呈现先增后减的规律;最后,影响气泡最终平衡形态的主要因素是气泡的浮力参数与韦伯数.  相似文献   

7.
The dynamics of a bubble near a corner formed by two flat rigid boundaries (walls), is studied experimentally using a spark-generated bubble. The expansion, collapse, rebound, re-collapse and migration of the bubble, along with jetting and protrusion, are captured using a high-speed camera. Our experimental observations reveal the behaviour of the bubble in terms of the corner angle and the dimensionless standoff distances to the near and far walls in terms of the maximum bubble radius. The bubble remains approximately spherical during expansion except for its surface becoming flattened when in close proximity to a wall. When a bubble is initiated at the bisector of the two walls, the bubble becomes oblate along the bisector during the late stages of collapse. A jet forms towards the end of collapse, pointing to the corner. The closer the bubble to the two walls, the more oblate along the bisector the bubble becomes, and the wider the jet. A bubble initiated near one of the two walls is mainly influenced by the nearer wall. The jet formed is pointing to the near wall but inclined towards the corner. After the jet penetrates through the bubble surface, the bubble becomes a bubble ring, and a bubble protrusion forms following the jet. The bubble ring collapses and subsequently disappears, while the protrusion firstly expands, and then collapses and migrates to the corner.  相似文献   

8.
流体体积法(VOF)可以便捷、高效地实现对多相流界面的捕捉和追踪。本文基于VOF方法,对单个空化泡在曲面固壁附近的运动进行了数值模拟,从实验对比、压力场、速度场、温度场演化、溃灭时间、射流速度、固壁温度等方面分析了空化泡溃灭过程的热动力学影响。结果表明,数值模拟得到的空化泡形态演化与实验观测到的现象一致,随着位置参数、泡内外压差及曲面固壁尺寸的改变,空化泡热动力学行为也将发生变化,受到流体运动及射流冲击的影响,溃灭瞬间产生的高温高压使得曲面固壁温度升高。本文研究的曲面固壁附近空化泡溃灭效应,揭示了空化泡与曲面固壁间的相互作用规律,对学术研究及工程应用都具有重要意义。  相似文献   

9.
The objective of this paper is to numerically investigate the thermodynamic effect during bubble collapse near a rigid boundary. A compressible fluid model is introduced to accurately capture the transient process of bubble shapes and temperature, as well as corresponding pressure, and velocity. The accuracy of the numerical model is verified by the experimental data of bubble shapes, and Keller-Kolodner equation as well as its thermodynamic equation. The results show that a bubble near the rigid boundary presents high-speed jet in collapse stage and counter jet in rebound stage, respectively. In the collapse stage, the bubble margin will shrink rapidly and do the positive work on the compressible vapor inside the bubble, then a significant amount of heat will be generated, and finally the generation of high-speed jet drives the low-temperature liquid outside the bubble to occupy the position of high-temperature vapor inside the bubble. In the rebound stage, the counter jet moving away from the rigid boundary takes part of heat away from the sub-bubble, which avoids the external work of the expansion of the sub-bubble and the temperature reduction caused by the dissipation effect of the vortex structure. In addition, the initial standoff has a significant effect on the thermodynamics of bubble oscillation. The temperature keeps increasing with the increase of the initial standoff in the collapse stage, while it shows a downward trend with the increase of the initial standoff in the rebound stage. That’s because the high-speed jet and counter jet of bubble gradually disappear when the initial standoff increases, which is the important reason for the opposite evolution trend of temperature in collapse and rebound stage.  相似文献   

10.
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.  相似文献   

11.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.  相似文献   

12.
激光空泡刚性半球面内运动   总被引:1,自引:0,他引:1  
采用甚高速照相技术与建立激光空泡在刚性半球壁面内的运动模型相结合的方法,确定了激光空泡在刚性半球面壁内的运动特性与无量纲距离的关系,提出了最佳无量纲距离概念。结果表明:半球反射面的半径与激光空泡最大半径之比小于1.1时,激光空泡在第1次膨胀时就会产生严重的变形并弹出半球面,并产生空化泡和空蚀,它们均会严重影响激光声的传播。该比值在1.1~3.3时,激光空泡将在第3次收缩之前接触半球面,容易对壁面造成空蚀。在该比值大于3.3的情况下,激光空泡在第3次收缩之前不会接触半球面,对激光声的传播和反射特性影响较小。如果考虑把空泡第1次溃灭时产生的激光声的声学中心控制在击穿点时,需要把该比值控制在5以上。  相似文献   

13.
格子Boltzmann方法伪势多相模型具有高效性和复杂几何边界实施的简易性。该文采用改进作用力的伪势多相模型,通过优化参数实现最大程度的热力学一致性,进而提高模型的密度比和稳定性。分别从伪速度、网格不变性、Young-Laplace验证等方面研究了改进模型的性能。通过改进的模型模拟了复杂几何固壁附近空泡溃灭过程。分析了空化泡溃灭阶段的密度场、压力场和速度场演化过程,以及复杂几何固壁附近的空泡动力学特性。结果表明伪势格子Boltzmann方法在探索空泡溃灭和复杂几何固壁间的相互作用规律研究中是一种有效的工具。  相似文献   

14.
The objective of this paper is to apply high-speed photography and schlieren method to investigate the bubble dynamics between the free surface and a rigid wall. The temporal evolution of the bubble shape and the free surface motion are recorded by two synchronous high-speed cameras. Experiments are carried out for a single bubble generated at various normalized stand-off distances from bubble center to the free surface and to the rigid wall. The results show that (1) three distinctive patterns are identified with the morphology of the bubble and free surface, namely single toroidal bubble without spike (STB), single toroidal bubble with a spike (STBS) and double toroidal bubbles with a spike (DTBS). (2) The dynamic characteristics of the bubble at collapse and rebound stage vary evidently at different patterns, including the bubble shape variations and free surface motion. In detail, the schlieren images show the formation and propagation of shock waves, which explains the radiative process of bubble collapse energy. (3) Qualitative comparisons are carried out for the bubble and free surface at the same pattern. And quantitative analyses are conducted for the jet velocity, bubble collapse position, bubble collapse time and spike height, etc. for different values of bubble-rigid wall distance.  相似文献   

15.
Thermodynamic behaviors and interactions between bubble pairs are important to better understand the cavitation phenomena. In this study, a compressible two-phase model, accounting for thermal effects to investigate the thermodynamic behaviors and interactions between bubble pairs, is developed in OpenFOAM. The volume of fluid (VOF) method is adopted to capture the interface. Validations are performed by comparing the simulation results of a single bubble and bubble pairs with corresponding experimental data. The dynamical behaviors of bubble pairs and their thermodynamic effect at different relative distances γ are investigated and discussed, which help reveal the bubble cloud dynamics. The quantitative analysis of γ effects on the maximum temperature during bubble collapse is performed with three distinct stages identified. For a single bubble collapsing near the rigid surface, the thermodynamic characteristics at different relative distances are similar to that of the bubble pairs, but the maximum temperature is higher since the single bubble can collapse to a smaller volume.  相似文献   

16.
近壁面气泡运动特性的数值计算   总被引:1,自引:0,他引:1       下载免费PDF全文
采用体积加速度模型确定水下爆炸气泡运动的初始条件,基于MSC.DYTRAN有限元软件开发了定义流场初始条件和边界条件的子程序,对气泡在水平刚性壁面附近的运动特性进行了数值模拟,通过对比发现数值计算结果与实验结果具有较好的一致性,证明了初始条件定义、子程序开发和有限元模型建立的正确性和数值计算的准确性。以此为基础,研究了水深、泡心与刚性底面之间的距离对气泡动态特性和射流速度的影响,通过数值计算得到了一些有规律的曲线。计算模型、方法及结果对相关的工程研究和计算具有一定的参考价值。  相似文献   

17.
The thermodynamic of cavitation bubble collapsing is a complex fundamental issue for cavitation application and prevention. The pseudopotential and thermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) is adopted to investigate the thermodynamic of collapsing cavitation bubble in this paper. The simulation results satisfy the maximum temperature equation of the bubble collapse, which derived from the Rayleigh-Plesset (R-P) equation. The validity of thermal MRT-LBM in simulating the collapse process of cavitation bubble is verified. It shows that the temperature evolution of vapor-liquid phase is well captured. Furthermore, the two-dimensional (2D) temperature, velocity and pressure field of the bubble near a solid wall are analyzed. The maximum temperature inside the bubble and wall temperature under different position offset parameters are discussed in details.  相似文献   

18.
This paper mainly focuses on the nonlinear pulsation of a bubble near the rigid wall. Dynamics of near-wall bubble and free bubble are discussed and compared in details. Investigation reveals as the driving acoustic pressure amplitude increases, nonlinear pulsation of bubble becomes intense gradually. Besides, decreasing the viscosity of host liquid is advantageous for the nonlinear pulsation of bubble. Bifurcation diagrams of bubble radius show acoustic reflection of the rigid wall makes the initial bifurcation appear at low driving acoustic amplitude and on bubble with small ambient radius, and makes the bifurcation still exist for bubble in high-viscosity liquids. That indicates the rigid wall will produce enhancement on the nonlinearity of nearby bubble. As the bubble approaches the wall, the enhancement becomes strong. Moreover, research on the influence of driving frequency shows the rigid wall makes the frequency band corresponding to chaos around the resonant frequency of free bubble shift downward.  相似文献   

19.
近壁面气泡的运动规律研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张阿漫  姚熊亮 《物理学报》2008,57(3):1662-1671
基于势流假设,建立气泡与壁面耦合数值模型,运用边界积分法求解,并开发三维计算程序,计算值与实验值符合很好.从气泡与壁面相互作用的基本现象入手,基于开发的程序系统地研究了刚性壁面附近气泡的动力学特性,其中包括水平壁面及倾斜壁面,研究壁面的Bjerknes效应与各特征参数之间的关系,并将各种工况的计算结果与基于Kelvin-impulse理论的Blake准则进行对比分析讨论,得出偏射流方向及壁面压力与气泡的特征参数有密切的关系,同时给出了Blake准则的适用范围.旨在为相关的近壁面气泡动态特性研究提供参考. 关键词: 气泡 壁面 边界积分 Bjerknes效应  相似文献   

20.
The interaction between spherical cavitation bubble and flat wall is transformed into that between the real bubble and imaging bubble by the method of images. Firstly, we investigate the dynamics of real bubble and matched, inversed or mis-matched imaging bubble driven by a small amplitude ultrasound, revealing the characteristics of the interaction between cavitation bubble and rigid, soft and impedance walls. Then, we emphatically study the dynamics of real bubble and mis-matched imaging bubble driven by a finite amplitude ultrasound, and the interaction characteristics between cavitation bubble and real impedance wall are revealed. The results show that the cavitation bubble is always close to the rigid wall and far away from the soft wall; For the impedance wall, whether the cavitation bubble is far away or close depends on the specific wall parameters. Moreover, the direction and magnitude of bubble's translation velocity can be changed by adjusting the driving parameters. Understanding the interaction between cavitation bubble and impedance wall is of great significance for efficient application of ultrasonic cavitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号