首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
Experiments have been performed to find out the effectiveness of the microwave radiation on the modification of the sisal fiber. The idea of taking the high frequency microwave for modification of the sisal is fueled by the present environmental and energy crisis. Physical properties of the fiber have been modified significantly after microwave irradiation under different conditions in terms of power and time. Macromolecular parameters of the fiber are characterized by the Small angle X-ray Scattering characterization (SAXS) technique. These parameters have been found to be changed significantly after the microwave heat treatment as compare to the raw fiber. The fibers that are irradiated for 4 min under 320 W microwave power (320W4) are found to have least distortion, defect, enhanced density, surface roughness, improved crystallinity, and hydrophobicity. However, the degradation of the structural component and crystallinity of the fiber are observed at higher power and higher treatment period. The chemical structure of the microwave treated fiber does not change much except at higher power and prolong treatment period.  相似文献   

2.
Dielectric barrier discharge (DBD) of Helium and Helium + air modify the surface of Angora rabbit fibers. DBD treatment carried out at different power densities, changes the morphology and chemical composition of the surface of Angora fiber. Scanning electron microscopy (SEM) results reveal that the DBD treatment eliminates fibrosity from the fiber surface. X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer (FTIR) spectrum confirm the increase in oxygen bonding at the surface. These changes reduce shedding of the fibers and improve dye-uptake property. However, even after 10 min of plasma exposure the thermal insulation (heat keeping ratio) of Angora fibers nearly remain unchanged. It has been noticed that DBD treatment (10 min) reduces whiteness of the fiber.  相似文献   

3.
A polyborylborazine precursor for hexagonal boron nitride (h-BN) was obtained by reaction of boron trichloride with methylamine and its structure was characterized by 11BNMR, 13CNMR, 1HNMR, and FTIR. The results show that the molecular precursor consists of borazine rings connected via a cross-linked network. The results of shear rheological tests indicated that the polymer is capable of being melt spun at moderate temperature, which implies that the structure of the molecular chains of the precursor polymer is branched. The precursor polymer was spun into a continuous polymer fiber in the melt state and then subsequently heat-treated under NH3 up to 1000°C for conversion into BN fibers. Its surface morphology was observed by scanning electron microscopy (SEM); the fiber was free of defects and cavities.  相似文献   

4.
Single-crystal fibers of Ti(3+):Al(2)O (3)have been grown by the laser-heated pedestal growth technique and shown to exhibit radial refractive-index gradients. A refractive-index increase of approximately 12% in the fiber core with respect to the fiber sidewalls has been measured. The index profile can be fitted with a parabolic model. Postgrowth treatment of Cr(3+):Gd(3)Sc (2)Al (3)O(12)fibers has been shown to produce a uniform cladding region with a graded-index core. The core index is some 12.5% larger than the cladding region, with an index profile shape that is approximately parabolic in nature.  相似文献   

5.
利用拉曼散射光谱测试技术,对不同温度处理后获得的各种相对湿度下的鲱精DNA纤维进行脱氧核苷C—H振动与结合水O—H振动行为分析,以揭示其中结合水的数量特征。结果表明,运用25926×I2964/I3024新指标所获数据与文献报道的小牛胸腺DNA水合状态拉曼数据不同,但与小牛胸腺DNA、鲑精DNA的红外、X射线衍射、重量分析及差示扫描量热分析所得数据相吻合,证明拉曼分析公式的修订是成功的。鲱精DNA纤维应与上述二种DNA纤维具有同样的水合状态,每核苷酸对含有9~14个结合水分子。  相似文献   

6.
Abstract

Optical infrared (IR) fibers with core-clad structure are of great importance because they have better qualities than unclad fibers for most IR fiber applications, especially in CO2 laser power delivery and radiometry. We have fabricated core-clad polycrystalline silver halide optical fibers with different compositions and core diameters, and although their loss is still higher than that of unclad fibers, they already have many advantages and new capabilities. The behavior of the scattering loss along these fibers and other optical properties was measured and compared with that of unclad silver halide fibers. We show that the higher loss of clad fibers results mainly from excessive scattering. The improvement in the process of fabricating clad fibers enabled the production of new elements such as single-mode fibers (SMFs) and fiber bundles for thermal imaging.  相似文献   

7.
Single-mode fibers with low attenuation and sufficient reliability are especially important for long-span optical transmission systems. Conventionally, GeO2 has been added to the fiber core region in order to make a refractive index difference between the core and cladding. However, the addition of GeO2 increases Rayleigh scattering loss [1], and deteriorates the chemical stability against hydrogen atmosphere and γ-ray irradiation to bring about an increase in attenuation. [2][3] Therefore, pure silica core single-mode fiber was considered to be an ideal type of fiber, and it was succeeded in being fabricated by utilizing fluorine containing SiO2 cladding.  相似文献   

8.
侯宇 《应用光学》2017,38(5):844-847
传统的THz单模单偏振光纤大部分都是基于实芯光纤设计的,增加了THz波的传输损耗。最近几年,也有一些关于空芯THz单模单偏振光纤的报道。但是,他们的带宽太窄,往往只能在单一频率附近工作,影响了单偏振器件在THz范围内的使用价值和技术优势。为了解决这些问题,设计了一种新颖结构的空芯THz单模单偏振器件。它拥有超过0.1 THz的带宽,工作频率范围从1.63 THz到1.73 THz。这种器件对于THz通信网络的建设和应用具有重要意义。  相似文献   

9.
Single-mode fibers with low attenuation and sufficient reliability are especially important for long-span optical transmission systems. Conventionally, GeO2 has been added to the fiber core region in order to make a refractive index difference between the core and cladding. However, the addition of GeO2 increases Rayleigh scattering loss [1], and deteriorates the chemical stability against hydrogen atmosphere and γ-ray irradiation to bring about an increase in attenuation. [2][3] Therefore, pure silica core single-mode fiber was considered to be an ideal type of fiber, and it was succeeded in being fabricated by utilizing fluorine containing SiO2 cladding.  相似文献   

10.
J. Li 《Applied Surface Science》2009,255(20):8682-8684
Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.  相似文献   

11.
Propagation characteristics of a segmented cladding fiber   总被引:3,自引:0,他引:3  
We propose a novel optical fiber design that consists of a uniform core and a segmented cladding formed by alternate regions of high and low refractive indices in the azimuthal direction. The structure is analyzed by use of the radial effective-index method, and the propagation characteristics of the structure are studied. The fiber has a highly dispersive cladding and shows characteristics similar to those of photonic-crystal fibers and holey fibers. The novel fiber offers the possibility of single-mode operation over a wide range of wavelengths with a large core diameter.  相似文献   

12.
毕卫红  王圆圆  付广伟  王晓愚  李彩丽 《物理学报》2016,65(4):47801-047801
设计了一种新型的石墨烯-空心光纤可调谐结构, 将石墨烯涂覆在空心光纤的空气孔内表面上, 利用有限元法研究了该结构的电光调制特性. 通过改变石墨烯的化学势可以调控光纤的相位和开关特性, 还可以调谐光纤损耗峰与次峰的位置、强度和宽度. 然而, 空气孔半径和石墨烯层数不会改变开关点和损耗峰与次峰的位置, 只会改变损耗差和损耗峰的强度和宽度, 而且由N 层石墨烯引起的损耗差是单层的N倍. 这是因为石墨烯的介电常数决定了光纤的有效折射率和损耗, 通过改变石墨烯的化学势可以改变石墨烯的介电常数, 而石墨烯的层数和空气孔半径却不会改变石墨烯的介电常数, 但是改变了石墨烯和光的作用强度. 经过参数优化之后, 我们提出一种基于五层石墨烯涂覆空心光纤的电吸收型调制器, 工作在1180–1760 nm波段, 具有小尺寸(5 mm×125 μm)、宽光带宽(580 nm)、高消光比(16 dB)、高调制带宽(64 MHz) 和低插入损耗(1.23 dB) 特性. 研究结果对基于石墨烯的可调谐光纤光子器件的设计和应用提供了理论参考.  相似文献   

13.
Liao M  Gao W  Duan Z  Yan X  Suzuki T  Ohishi Y 《Optics letters》2012,37(11):2127-2129
We investigate supercontinuum (SC) generation in highly nonlinear tellurite microstructured fibers pumped by a continuous wave (cw)/quasi-cw laser. We investigate two types of tellurite fibers. One type has the constant core diameter, and the other type has a longitudinally varying core diameter. For the fibers with a constant core diameter, when pumped in the anomalous dispersion region, the SC is symmetric in a fiber that has a zero dispersion wavelength close to the pump wavelength. For the fibers with a longitudinally varying diameter, the calculated phase-matching conditions show that they have a broad wavelength range of dispersive waves, and therefore the measured SC spectrum can be broader than one octave. In this work, the fiber lengths are as short as several tens of centimeters, and the pump power is in the watt level.  相似文献   

14.
《Composite Interfaces》2013,20(6):629-650
Using thermogravimetric analysis (TGA), the thermal behavior of sisal fibers and sisal/polyester composites, fabricated by resin transfer molding (RTM), has been followed. Chemical treatments have been found to increase the thermal stability, which has been attributed to the resultant physical and chemical changes. Scanning electron microscopy (SEM) and infrared (FT-IR) studies were also performed to study the structural changes and morphology in the sisal fiber during the treatment. The kinetic studies of thermal degradation of untreated and treated sisal fibers have been performed using Broido method. In the composites, as the fiber content increases, the thermal stability of the matrix decreases. The treated fiber reinforced composites have been found to be thermally more stable than the untreated derivatives. The increased thermal stability and reduced moisture behavior of treated composites have been correlated with fiber/matrix adhesion.  相似文献   

15.
The mixed-valence state of Prussian blue and its thermal decomposition products has been studied by Mössbauer and infrared spectra, and X-ray powder diffraction and conductivity measurements. The57Fe Mössbauer spectra have revealed that the coordination environment of Prussian blue is not changed by the heat-treatment at lower than 200°C while the flipping of the cyano ligands takes place when the heat-treatment temperature exceeds 250°C. The electrical conductivity of the Prussian blue samples heat-treated in vacuo at 300 and 350°C is higher than that of the samples heat-treated at lower temperatures. All the spectral measurements have demonstrated that a new mixed-valence state is produced in Prussian blue by thermally flipping the cyano ligand and quenching the flipped cyano ligand to liquid nitrogen temperature.  相似文献   

16.
A theoretical investigation of a novel type of optical fiber is presented. The operation of the fiber relies entirely on wave guidance through the photonic bandgap effect and not on total internal reflection, thereby distinguishing that fiber from all other known fibers, including recently studied photonic crystal fibers. The novel fiber has a central low-index core region and a cladding consisting of a silica background material with air holes situated within a honeycomb lattice structure. We show the existence of photonic bandgaps for the silica-air cladding structure and demonstrate how light can be guided at the central low-index core region for a well-defined frequency that falls inside the photonic bandgap region of the cladding structure.  相似文献   

17.
Composite structure of carbon fibers and SiC nanowires was fabricated by a simple chemical vapor deposition process, using commercial silicon dioxide and graphite powders as raw materials. The analysis of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction indicates that the synthesized SiC nanowires distribute uniformly with high density in the used carbon fiber preform, which are perpendicular to and around each carbon fiber in a radial array. The SiC nanowires located at the interface of advanced composites is very favorable to the interfacial bonding between composites matrix and carbon fibers, thereby increasing the strength of composites greatly.  相似文献   

18.
Composite structure of carbon fibers and SiC nanowires was fabricated by a simple chemical vapor deposition process, using commercial silicon dioxide and graphite powders as raw materials. The analysis of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction indicates that the synthesized SiC nanowires distribute uniformly with high density in the used carbon fiber preform, which are perpendicular to and around each carbon fiber in a radial array. The SiC nanowires located at the interface of advanced composites is very favorable to the interfacial bonding between composites matrix and carbon fibers, thereby increasing the strength of composites greatly.  相似文献   

19.
Vertically aligned carbon nanotube (CNT) arrays have been grown onto the carbon fiber fabric using a catalytic chemical vapor deposition (CCVD) method. The as-synthesized CNT arrays are about 20 μm in height, and the nanotube has a mean inner and outer diameter of 2.6 nm, 5.5 nm, respectively. The CNT-grafted carbon fabric shows a hydrophobic property with a contact angle over 145°, and the single CNT-grafted carbon fiber shows a sharp increase of dynamic contact angle in de-ionized water from original 71.70° to about 103°, but a little increase does in diiodomethane or E-51 epoxy resin. However, the total surface energy of carbon nanotube-grafted carbon fiber is almost as same as that of as-received carbon fiber. After CNTs growth, single fiber tensile tests indicated a slight tensile strength degradation within 10% for all different lengths of fibers, while the fiber modulus has not been significantly damaged. Compared with the as-received carbon fibers, a nearly 110% increase of interfacial shear strength (IFSS) from 65 to 135 MPa has been identified by single fiber pull-out tests for the micro-droplet composite, which is reinforced by as-received carbon fiber or CNT-grafted carbon fiber.  相似文献   

20.
Optical infrared (IR) fibers with core-clad structure are of great importance because they have better qualities than unclad fibers for most IR fiber applications, especially in CO2 laser power delivery and radiometry. We have fabricated core-clad polycrystalline silver halide optical fibers with different compositions and core diameters, and although their loss is still higher than that of unclad fibers, they already have many advantages and new capabilities. The behavior of the scattering loss along these fibers and other optical properties was measured and compared with that of unclad silver halide fibers. We show that the higher loss of clad fibers results mainly from excessive scattering. The improvement in the process of fabricating clad fibers enabled the production of new elements such as single-mode fibers (SMFs) and fiber bundles for thermal imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号