首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
构造了一种正则化的积分方程方法来由Cauchy数据确定一维热传导方程的移动边界.在将区域延拓至规则区域后,通过Fourier方法将问题转化为一个第一类Volterra积分方程.然后分别用Lavrentiev正则化方法以及Tikhonov正则化方法将不稳定的第一类Volterra积分方程转化为适定的第二类积分方程,并分别将积分方程转化为常微分方程组,并用Runge—Kutta方法数值求解,以及直接离散来求解.最后通过自由边界上的条件得到数值的移动边界.通过一些数值试验表明此方法是有效可行的,并且给出的方法无需迭代,数值计算较简单.  相似文献   

2.
In this paper, we study an inverse problem of identifying a time-dependent term of an unknown source for a time fractional diffusion equation using nonlocal measurement data. Firstly, we establish the conditional stability for this inverse problem. Then two regularization methods are proposed to for reconstructing the time-dependent source term from noisy measurements. The first method is an integral equation method which formulates the inverse source problem into an integral equation of the second kind; and a prior convergence rate of regularized solutions is derived with a suitable choice strategy of regularization parameters. The second method is a standard Tikhonov regularization method and formulates the inverse source problem as a minimizing problem of the Tikhonov functional. Based on the superposition principle and the technique of finite-element interpolation, a numerical scheme is proposed to implement the second regularization method. One- and two-dimensional examples are carried out to verify efficiency and stability of the second regularization method.  相似文献   

3.
Summary. An additive Schwarz iteration is described for the fast resolution of linear ill-posed problems which are stabilized by Tikhonov regularization. The algorithm and its analysis are presented in a general framework which applies to integral equations of the first kind discretized either by spline functions or Daubechies wavelets. Numerical experiments are reported on to illustrate the theoretical results and to compare both discretization schemes. Received March 6, 1995 / Revised version received December 27, 1995  相似文献   

4.
This paper is devoted to solve a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain by the Tikhonov regularization method. Based on the eigenfunction expansion of the solution, the backward problem for searching the initial data is changed to solve a Fredholm integral equation of the first kind. The conditional stability for the backward problem is obtained. We use the Tikhonov regularization method to deal with the integral equation and obtain the series expression of solution. Furthermore, the convergence rates for the Tikhonov regularized solution can be proved by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Two numerical examples in one-dimensional and two-dimensional cases respectively are investigated. Numerical results show that the proposed method is effective and stable.  相似文献   

5.
A version of boundary integral equations of the first kind in dynamic problems of the theory of elasticity is proposed, based on an investigation of the analytic properties of the Fourier transformant of the displacement vector, rather than on fundamental solutions. A system of three boundary integral equations of the first kind with Fredholm kernels is constructed, and the equivalence of the initial boundary-value problem on the vibrations of a bounded region and the system of boundary integral equations obtained is investigated. A version of the numerical realization, which combines the ideas of the classical method of boundary elements and the Tikhonov regularization method, is proposed. The results of numerical experiments are given.  相似文献   

6.
A modified iteratively regularized gradient method and its continuous version are proposed for nonlinear ill-posed problems, in which the Tikhonov regularization term is generated by a linear operator. The linear operator may have some physical meaning. And by employing the linear operator, scaling the problem can be avoided in the case that the nonlinear operator in the problem has larger gradient. Adopting a posteriori and a priori stopping rule respectively, we establish the convergence results by using a modified approximate source condition. The numerical results show that the linear operator effects the performance greatly.  相似文献   

7.
We consider numerical methods for solving inverse problems that arise in heart electrophysiology. The first inverse problem is the Cauchy problem for the Laplace equation. Its solution algorithm is based on the Tikhonov regularization method and the method of boundary integral equations. The second inverse problem is the problem of finding the discontinuity surface of the coefficient of conductivity of a medium on the basis of the potential and its normal derivative given on the exterior surface. For its numerical solution, we suggest a method based on the method of boundary integral equations and the assumption on a special representation of the unknown surface.  相似文献   

8.
A Tikhonov finite-dimensional approximation is applied to a Fredholm integral equation of the first kind. This allows using a variational regularization method with a regularization parameter from the residual principle and reducing the problem to a system of linear algebraic equations. The accuracy of the approximate solution is estimated with allowance for the error of the finitedimensional approximation of the problem. The use of this approach is illustrated by solving an inverse boundary value problem for the heat conduction equation.  相似文献   

9.
The problem of identification of the diffusion coefficient in the partial differential equation is considered. We discuss a natural linearization of this problem and application of discretized Tikhonov–Phillips regularization to its linear version. Using recent results of regularization theory, we propose a strategy for the choice of regularization and discretization parameters which automatically adapts to unknown smoothness of the coefficient. The estimation of the accuracy will be given and various numerical test supporting theoretical results will be presented.  相似文献   

10.
We consider a control-constrained parabolic optimal control problem without Tikhonov term in the tracking functional.For the numerical treatment,we use variational discretization of its Tikhonov regularization:For the state and the adjoint equation,we apply Petrov-Galerkin schemes in time and usual conforming finite elements in space.We prove a-priori estimates for the error between the discretized regularized problem and the limit problem.Since these estimates are not robust if the regularization parameter tends to zero,we establish robust estimates,which--depending on the problem's regularity——enhance the previous ones.In the special case of bang-bang solutions,these estimates are further improved.A numerical example confirms our analytical findings.  相似文献   

11.
The inverse electrocardiography problem related to medical diagnostics is considered in terms of potentials. Within the framework of the quasi-stationary model of the electric field of the heart, the solution of the problem is reduced to the solution of the Cauchy problem for the Laplace equation in R 3. A numerical algorithm based on the Tikhonov regularization method is proposed for the solution of this problem. The Cauchy problem for the Laplace equation is reduced to an operator equation of the first kind, which is solved via minimization of the Tikhonov functional with the regularization parameter chosen according to the discrepancy principle. In addition, an algorithm based on numerical solution of the corresponding Euler equation is proposed for minimization of the Tikhonov functional. The Euler equation is solved using an iteration method that involves solution of mixed boundary value problems for the Laplace equation. An individual mixed problem is solved by means of the method of boundary integral equations of the potential theory. In the study, the inverse electrocardiography problem is solved in region Ω close to the real geometry of the torso and heart.  相似文献   

12.
The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size, which allow evaluation of the singular value decomposition of the matrix defining the problem, are the truncated singular value decomposition and Tikhonov regularization. The present paper proposes a novel choice of regularization matrix for Tikhonov regularization that bridges the gap between Tikhonov regularization and truncated singular value decomposition. Computed examples illustrate the benefit of the proposed method.  相似文献   

13.
A numerical method is proposed for solving an inverse electrocardiography problem for a medium with a piecewise constant electrical conductivity. The method is based on the method of boundary integral equations and Tikhonov regularization.  相似文献   

14.
In this paper, we consider large-scale linear discrete ill-posed problems where the right-hand side contains noise. Regularization techniques such as Tikhonov regularization are needed to control the effect of the noise on the solution. In many applications such as in image restoration the coefficient matrix is given as a Kronecker product of two matrices and then Tikhonov regularization problem leads to the generalized Sylvester matrix equation. For large-scale problems, we use the global-GMRES method which is an orthogonal projection method onto a matrix Krylov subspace. We present some theoretical results and give numerical tests in image restoration.  相似文献   

15.
This paper concerns an inverse problem of recovering implied volatility in shortterm interest rate model from the market prices of zero-coupon bonds. Based on linearization, an analytic solution, which is given as a power series, is derived for the direct problem.By neglecting high order terms in the power series, an integral equation about the perturbation of volatility is formulated and the Tikhonov regularization method is applied to solve the integral equation. Finally numerical experiments are given and the results show that the method is effective.  相似文献   

16.
In this paper, we explore the question of which non-linear inverse problems, which are solved by a selected regularization method, may have so-called linear a priori accuracy estimates – that is, the accuracy of corresponding approximate solutions linearly depends on the error level of the data. In particular, we prove that if such a linear estimate exists, then the inverse problem under consideration is well posed, according to Tikhonov. For linear inverse problems, we find that the existence of linear estimates lead to, under some assumptions, the well-posedness (according to Tikhonov) on the whole space of solutions. Moreover, we consider a method for solving inverse problems with guaranteed linear estimates, called the residual method on the correctness set (RMCS). The linear a priori estimates of absolute and relative accuracy for the RMCS are presented, as well as analogous a posteriori estimates. A numerical illustration of obtaining linear a priori estimates for appropriate parametric sets of solutions using RMCS is given in comparison with Tikhonov regularization. The a posteriori estimates are calculated on these parametric sets as well.  相似文献   

17.
《Journal of Complexity》2006,22(3):371-381
We discuss adaptive strategies for choosing regularization parameters in Tikhonov–Phillips regularization of discretized linear operator equations. Two rules turn out to be based entirely on data from the underlying regularization scheme. Among them, only the discrepancy principle allows us to search for the optimal regularization parameter from the easiest problem. This potential advantage cannot be achieved by the standard projection scheme. We present a modified scheme, in which the discretization level varies with the successive regularization parameters, which has the advantage, mentioned before.  相似文献   

18.
In this paper we propose a direct regularization method using QR factorization for solving linear discrete ill-posed problems. The decomposition of the coefficient matrix requires less computational cost than the singular value decomposition which is usually used for Tikhonov regularization. This method requires a parameter which is similar to the regularization parameter of Tikhonov's method. In order to estimate the optimal parameter, we apply three well-known parameter choice methods for Tikhonov regularization.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
Summary In this paper new multilevel algorithms are proposed for the numerical solution of first kind operator equations. Convergence estimates are established for multilevel algorithms applied to Tikhonov type regularization methods. Our theory relates the convergence rate of these algorithms to the minimal eigenvalue of the discrete version of the operator and the regularization parameter. The algorithms and analysis are presented in an abstract setting that can be applied to first kind integral equations.Dedicated to Jim Bramble on the occasion of his sixtieth birthday  相似文献   

20.
Inverse problems based on first-kind Volterra integral equations appear naturally in the study of many applications, from geophysical problems to the inverse heat conduction problem. The ill-posedness of such problems means that a regularization technique is required, but classical regularization schemes like Tikhonov regularization destroy the causal nature of the underlying Volterra problem and, in general, can produce oversmoothed results. In this paper we investigate a class of local regularization methods in which the original (unstable) problem is approximated by a parameterized family of well-posed, second-kind Volterra equations. Being Volterra, these approximating second-kind equations retain the causality of the original problem and allow for quick sequential solution techniques. In addition, the regularizing method we develop is based on the use of a regularization parameter which is a function (rather than a single constant), allowing for more or less smoothing at localized points in the domain. We take this approach even further by adopting the flexibility of an additional penalty term (with variable penalty function) and illustrate the sequential selection of the penalty function in a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号