首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A scanning tunneling microscopy study of PH3 adsorption on Si(1 1 1)-7 × 7 surfaces, P-segregation and thermal desorption
Authors:Jeong-Young Ji
Institution:Department of Physics, Utah State University, Logan, UT 84322, United States
Abstract:PH3 adsorption on Si(1 1 1)-7 × 7 was studied after various exposures between 0.3 and 60 L at room temperature by means of scanning tunneling microscopy (STM). PH3-, PH2-, H-reacted, and unreacted adatoms can be identified by analyzing empty-state STM images at different sample biases. PHx-reacted rest-atoms can be observed in empty-state STM images if neighboring adatoms are hydrogen terminated. Most of the PH3 adsorbs dissociatively on the surface, generating H- and PH2-adsorbed rest-atom and adatom sites. Dangling-bonds at rest-atom sites are more reactive than adatom sites and the faulted half of the 7 × 7 unit cell is more reactive than the unfaulted half. Center adatoms are overwhelmingly preferred over corner adatoms for PH2 adsorption. The saturation P coverage is ∼0.18 ML. Annealing of PH3-reacted 7 × 7 surfaces at 900 K generates disordered, partially P-covered surfaces, but dosing PH3 at 900 K forms P/Si(1 1 1)-View the MathML source surfaces. Si deposition at 510 K leaves disordered clusters on the surface, which cannot be reordered by annealing up to 800 K. However, annealing above 900 K recreates P/Si(1 1 1)-View the MathML source surfaces. Surface morphologies formed by sequential rapid thermal annealing are also presented.
Keywords:Scanning tunneling microscopy  Silicon  Phosphine  Phosphorous  Adsorption  Surface segregation  Desorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号