首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3601篇
  免费   97篇
  国内免费   750篇
化学   3485篇
晶体学   8篇
力学   33篇
数学   10篇
物理学   912篇
  2024年   14篇
  2023年   94篇
  2022年   144篇
  2021年   76篇
  2020年   120篇
  2019年   91篇
  2018年   83篇
  2017年   111篇
  2016年   126篇
  2015年   95篇
  2014年   139篇
  2013年   190篇
  2012年   174篇
  2011年   249篇
  2010年   208篇
  2009年   285篇
  2008年   251篇
  2007年   316篇
  2006年   262篇
  2005年   177篇
  2004年   173篇
  2003年   144篇
  2002年   109篇
  2001年   104篇
  2000年   80篇
  1999年   77篇
  1998年   69篇
  1997年   75篇
  1996年   59篇
  1995年   46篇
  1994年   44篇
  1993年   37篇
  1992年   28篇
  1991年   29篇
  1990年   25篇
  1989年   31篇
  1988年   21篇
  1987年   11篇
  1986年   12篇
  1985年   9篇
  1984年   12篇
  1983年   7篇
  1982年   13篇
  1981年   9篇
  1980年   8篇
  1979年   5篇
  1978年   2篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有4448条查询结果,搜索用时 15 毫秒
1.
Photo-catalytic elimination of organic contaminants plays a significant role in wastewater treatment. Developing a highly efficient photo-catalyst is one of the leading research topic. Herein, we reported the fabrication of a novel nanoporous NiO@SiO2 photo-catalyst by a simple ion-exchange method to eliminate the reactive dyes. The synthesized NiO@SiO2 catalyst exhibited fast photo-degradation and excellent adsorption capability and could efficiently remove Red FN-3GL dye from wastewater, due to a high loading of NiO and a large specific surface area, abundant electron-withdrawing groups, as well as narrow bandgap energy. In addition, the NiO@SiO2 photo-catalyst also displayed a high capability to remove reactive dyes over a wide range of pH values (pH 3–9). The prominent adsorption and photo-degradation of dyes were strongly dependent on the surface charge of the catalyst and the generation of hydroxyl radicals (OH?) by the catalyst, respectively. Furthermore, the NiO@SiO2 photo-catalyst also exhibited excellent recyclability, thus demonstrating the feasibility of practical applications in industries. The strategy of covering the metal oxide to nanoporous silica is a promising method for developing active photo-catalysts and applying them in the wastewater treatments.  相似文献   
2.
Volatile organic compounds (VOCs) are growing pollutants now that cause the serious environmental pollution and threaten human health. The functionalized ordered mesoporous silica (FOMS) has attracted considerable attention in adsorbing VOCs. In this paper, the molecular dynamics simulation was used to simulate the adsorption performance of FOMS on VOCs (acetone, ethyl acetate and toluene). After simulating different pore sizes (2 nm, 3 nm and 4 nm) adsorption performances of ordered mesoporous silica (OMS) on VOCs, OMS with a pore size of 4 nm was selected to further study the influence of functional groups (vinyl, methyl, and phenyl). The following law was obtained: the saturated adsorption capacities of vinyl-functionalized OMS (V-FOMS) to acetone, ethyl acetate and toluene were 3.045 mmol.g?1, 2.568 mmol.g?1 and 1.976 mmol.g?1 respectively; the saturated adsorption capacities of methyl-functionalized OMS (M-FOMS) to acetone, ethyl acetate and toluene were 2.798 mmol.g?1, 2.312 mmol.g?1 and 1.698 mmol.g?1 respectively; the saturated adsorption capacities of phenyl-functionalized OMS (P-FOMS) to acetone, ethyl acetate and toluene were 2.124 mmol.g?1, 1.941 mmol.g?1 and 1.539 mmol.g?1 respectively. These results show that the adsorption ability of FOMS for different adsorbates follows the sequence of acetone > ethyl acetate > toluene. Furthermore, the interaction between functional groups (vinyl, methyl and phenyl) in FOMS and VOCs was explored. It is found that the interaction between different functional groups and adsorbates is different (interaction energy effect). This interaction energy effect promotes FOMS to better adsorb VOCs. This work would provide fundamental understanding and guidance for the development of novel adsorption materials for the adsorption of VOCs.  相似文献   
3.
Recent developments in the study of the formation of self-assembled surfactant structures and multilayers at the solid-solution interface are presented. It covers a wide range of phenomena, but in this review the main focus is on the surface structures formed from dilute solution in the presence of electrolyte and in more concentrated solutions. Their formation under those conditions are set in the wider context of the more extensive observations of their occurrence in more complex polymer-surfactant mixtures. Although the sequential adsorption methods using layer-by-layer approaches are more well established for polyelectrolytes and their associated mixtures, the main emphasis is on the self-assembly. The opportunities to manipulate wetting properties and to generate enhanced wetting characteristics are discussed. The potential applications, modifying wetting behaviour, efficient near surface reservoir for enhanced and prolonged delivery of active components, and for the development of a range of smart functionalised surfaces are highlighted.  相似文献   
4.
5.
采用密度泛函理论的B3LYP, B3P86, B1B95, P3PW91和PBE1PBE方法结合SDD, LANL2DZ和CEP-121G基组计算了d~(10)组态二聚物MN(M=Ga, Ge, In, Sn和Sb; N=M和Al)的几何结构.采用B3P86/SDD进一步研究了MN@H_2O团簇的几何结构及吸附能.结果表明,水分子结合在二聚物M_2上时,对二聚物影响较大,对水分子自身影响较小.将M_2中Ga, Ge, In, Sn或Sb替换一个原子为Al时,水分子在GeAl和SnAl上的吸附能变化较大,而在GaAl, InAl和SbAl上吸附能变化较小.另外, H_2O吸附在Ga, Ge, In, Sn和Sb上时,与吸附在Al上时,吸附能的变化不大.  相似文献   
6.
The adsorption of particles to air–aqueous interfaces is vital in many applications, such as mineral flotation and the stabilization of food foams. The forces in the system determine whether a particle will attach to an air–aqueous interface. The forces between a particle and an air–aqueous interface are influenced by Derjaguin–Landau–Verwey–Overbeek forces (i.e. van der Waals and electrostatic forces), non–Derjaguin–Landau–Verwey–Overbeek forces (e.g. hydrophobic, hydrodynamic, structural, and capillary forces), liquid drainage, and liquid flow. As an air–aqueous interface can be deformed by a particle, the forces measured between an air–aqueous interface and a particle can differ from those measured between two hard surfaces separated by liquid. The presence of a film at an air–aqueous interface can also change the forces.  相似文献   
7.
A green and environment-friendly magnetically separable nanocomposite, glutathione@magnetite was fabricated sonochemically through the functionalization of Fe3O4 by glutathione which was well characterized using Fourier-transform infrared spectroscopy, ultravoilet-visible spectroscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetric analysis, vibrating sample magnetometer, Brunauer-Emmett-Teller, and high-resolution transmission electron microscope. The parameters affecting adsorption including pH, temperature, contact time, initial adsorbate concentration, and adsorbent amount were optimized by batch experiments. The magnetic glutathione@magnetite was applied for the removal of uranium(VI) in water with maximum adsorption capacity found to be 333.33 mg/g in 120 min at a neutral pH at 25 °C showing high efficiency for U(VI) ions. Furthermore, adsorption results obtained from UV-vis spectroscopy were validated by inductively coupled plasma optical emission spectroscopy. The thermodynamic parameters, viz Gibbs free energy (ΔGº), standard enthalpy change (ΔHº), and standard entropy change (ΔSº) of the process were calculated using the Langmuir constants. The pseudo-second-order kinetics model is seen to be applicable for describing the uptake process using a kinetics test. Moreover, desorption studies reveals that glutathione@magnetite can be used repeatedly, and removal efficiency shows only a small decrease after six cycles. Thus, glutathione@magnetite acts as a potential adsorbent for the removal of U(VI) from the water with great adsorption performance.  相似文献   
8.
ABSTRACT

A chemically modified-biosorbent was prepared by attaching dithizone onto Salacca zalacca skin waste for Hg2+ bioremoval. The material was synthesized by refluxing dithizone 5% with the Salacca zalacca skin powder followed by drying. The material was characterized through scanning electron microscopy, gas sorption analysis, and Boehm titration. The applicability of the material as biosorbent was tested for Hg2+ adsorption at room temperature. Findings suggested that the modification altered the surface properties of the biosorbent as indicated by the increased values for such surface parameters as specific surface area, pore volume, and quantitative functional groups. Particularly, the material demonstrated a high removal efficiency during Hg2+ adsorption, which fit the pseudo-second-order kinetics. The removal efficiency of Hg2+ was not influenced by the adsorbent dosage of 1–4?g/L.  相似文献   
9.
工业催化:选择性提升策略   总被引:1,自引:0,他引:1  
工业催化直接或间接贡献了世界GDP的20%-30%,推动了产业变革和社会进步.对于工业催化,开发高活性、高选择性和高稳定性的多相催化剂至关重要,而选择性是最主要的挑战.因为实现催化选择性的精确控制是绿色化学的重要概念之一,更是工业催化可持续发展的重要驱动力;而且,选择性不仅决定了催化过程的原子经济性,也影响到后续分离过程的能耗.针对多数工业催化反应存在'活性越高、选择性越低'的相互制约与矛盾问题,本文以若干能源化工催化反应为例,试图总结催化选择性提升的一般策略,以期为有关工业应用的催化新过程提供科学参考.多相催化一般经历与反应物有关的步骤(反应物的外扩散、内扩散和化学吸附)、与反应有关的步骤(活化和表面反应)、以及与产物相关的步骤(产物脱附、内扩散和外扩散).本文依此归纳并举例说明提高选择性的一般策略.在汽油催化吸附脱硫中,主要利用了催化剂中零价镍-氧化锌耦合活性中心的选择吸附策略,使零价镍优先吸附含硫化合物,从而实现选择性脱硫而不饱和烯烃.在甲苯和甲醇侧链烷基化反应中,主要利用了特定空间分布的酸碱吸附位,实现吸附甲苯和稳定甲醛中间体的协同匹配.在乙苯脱乙基型二甲苯异构化反应中,主要利用了双床层对催化剂功能的分离策略,在不同的择形催化剂床层中分别进行乙苯脱乙基反应和二甲苯异构化反应,从而提高对二甲苯的产量.在苯选择加氢制环己烯反应中,主要利用强化产品脱附的策略,促进环己烯产品从亲水改性的催化剂表面脱附,实现环己烯选择性的提升.这些炼油与化工研究案例中同时存在多个连串-平行反应,主要是利用吸附中心、反应中心在时间或空间上的耦合、解耦或限域策略,调控不同途径的扩散能垒、反应能垒,实现了催化剂选择性的提升.多相催化多是复杂过程,基于提高选择性的初步认识,还要结合具体复杂催化过程,系统研究单策略以及多策略组合作用下的选择催化过程,实现在合理时间尺度、空间尺度上设计高选择性的催化剂,而这本质上是一种介尺度催化.  相似文献   
10.
The threat of phenol contamination in aquatic ecosystems is significant for the health of the earth's water systems as well as all humans on it. The present study was conducted to synthesize a cost-effective adsorbent (pea shells activated with sulfuric acid, PSASA) from agriculture waste (pea shells) and its use for effective removal of toxic 4-Aminophenol (4-AP). Newly designed PSASA exhibited significant adsorption of 4-AP which was confirmed by SEM, FT-IR, and XRD analysis. Surface topography confirmed high unevenness of the PSASA surface and the macroporous feature of the PSASA was confirmed by BET analysis. . Multiple testing was done to see how various factors affected adsorption such as adsorbent dose, temperature, pH, PZC, the effect of KCl and urea addition and the effect of the initial concentration of 4-AP. A drop in adsorption uptake of 4-AP was observed as the temperature increases from 25 °C to 45 °C. Maximum adsorption uptake (qm) was found to be 106.11 mg/g at an optimum pH of 7.0 and 25 °C. Among various adsorption isotherm models tested, Langmuir Isotherm gave the best explanation with high R2 values of experimental data. The pseudo-first-order model was found to explain the kinetics of adsorption well. The thermodynamic finding confirms the adsorption process was physical and exothermic. The adsorption of 4-AP was primarily governed by electrostatic interaction, hydrogen-bonding and π-π exchange mechanism. Because of the positive outcomes of the present research, we can use the PSASA as a cost-effective adsorbent for removing phenolic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号