首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1119篇
  免费   115篇
  国内免费   205篇
化学   1017篇
晶体学   74篇
力学   2篇
综合类   15篇
数学   1篇
物理学   330篇
  2024年   1篇
  2023年   47篇
  2022年   18篇
  2021年   33篇
  2020年   38篇
  2019年   28篇
  2018年   34篇
  2017年   45篇
  2016年   46篇
  2015年   31篇
  2014年   50篇
  2013年   77篇
  2012年   122篇
  2011年   75篇
  2010年   62篇
  2009年   63篇
  2008年   74篇
  2007年   87篇
  2006年   78篇
  2005年   68篇
  2004年   39篇
  2003年   40篇
  2002年   45篇
  2001年   31篇
  2000年   29篇
  1999年   29篇
  1998年   26篇
  1997年   25篇
  1996年   29篇
  1995年   28篇
  1994年   14篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1959年   1篇
排序方式: 共有1439条查询结果,搜索用时 15 毫秒
1.
In this work, a green technique for preparing TbFeO3/CuO was reported by employing Crataegus and Lantana Camara leaves as fuel and alkalizing agents, respectively. The new sensor based on the perovskite-type nanocomposite was employed as a sensitive and selective platform to detect Pb(II), Zn(II) and Cd(II) simultaneously. TbFeO3/CuO/Carbon paste electrode (CPE) exhibited a large specific surface area and great electrical conductivity, which enhanced electron transport in the electrochemical process considerably. Moreover, square wave anodic stripping voltammetry (SWASV) was used for the investigation of some factors influencing the sensor sensitivity like pH, modifier concentration, as well as accumulation time and potential. Therefore, the low detection limit (LOD) and a wide linear range were obtained at optimum conditions. In this study, a linear range between 0.9 and 110 µg/L for three ions and LOD of 0.48, 0.29 and 0.12 for zinc, cadmium and lead were achieved, respectively. Moreover, TbFeO3/CuO/CPE was employed to detect zinc, cadmium and lead ions simultaneously in the real samples so that the results have shown consistency with a standard inductively coupled plasma (ICP).  相似文献   
2.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Visible and near-infrared(VNIR)spectroscopy is an eco-friendly method used for estimating plant nutrient deficiencies.The aim of this study was to investigate the possibility of using VNIR method for estimating Zn content in cherry orchard leaves under field conditions.The study was conducted in 3different locations in Isparta region of Turkey.Fifteen cherry orchards containing normal and Zn deficient plants were chosen,and 60 leaf samples were collected from each location.The reflectance spectra of the leaves were measured with an ASD FieldSpec HandHeld spectroradiometer and a plant probe.The Zn contents of leaf samples were predicted through laboratory analysis.The spectral reflectance measurements were used to estimate the Zn levels using stepwise multiple linear regression analysis method.Prediction models were created using the highest coefficient of determination value.The results show that Zn content of cherry trees can be estimated using the VNIR spectroscopic method(87.5相似文献   
4.
采用基于密度泛函理论的平面波超软赝势方法对本征Zn2GeO4,Mn2+掺杂Zn2GeO4,Mn2+/N2-共掺杂Zn2GeO4超晶胞进行了几何结构优化,计算了掺杂前后体系的晶格常数、能带结构、态密度和光学性质。结果表明,Mn离子掺入后,Mn离子3d轨道与O离子2p轨道之间有强烈的轨道杂化效应,掺杂系统不稳定,而Mn/N离子共掺后,Mn离子和N离子之间的吸引作用克服了Mn离子之间的排斥作用,能够明显地提高掺杂浓度和体系的稳定性。光学性质计算结果表明,Mn离子与N离子共掺杂能改善Zn2GeO4电子在低能区的光学跃迁特性,增强电子在可见光区的光学跃迁;吸收谱计算结果显示,Mn离子与N离子掺入后体系对低频电磁波吸收增加。  相似文献   
5.
6.
Attachment of one electron to 1,2-diBeX-benzene and 1,2-diZnX-benzene derivatives leads to the formation of stronger Be Be and ZnZn interaction compared to the neutral one. This is reflected in the dramatic shortening of the Be Be and ZnZn distance. The formation of these 2-center-1-electron bonds have also been confirmed by topological survey of electron density using quantum theory of atoms in molecules and electron localization function. The formation of these bonds is expected to render stability to these radical anions. These radical anions are stable toward electron detachment and computed bond dissociation energy values are also significant.  相似文献   
7.
Constructing a reliable solid-electrolyte interphase (SEI) is imperative for enabling highly reversible zinc metal (Zn0) electrodes. Contrary to conventional “bulk solvation” mechanism, we found the SEI structure is dominated by electric double layer (EDL) adsorption. We manipulate the EDL adsorption and Zn2+ solvation with ether additives (i.e. 15-crown-5, 12-crown-4, and triglyme). The 12-crown-4 with medium adsorption on EDL leads to a layer-structured SEI with inner inorganic ZnFx/ZnSx and outer organic C−O−C components. This structure endows SEI with high rigidness and strong toughness enabling the 100 cm2 Zn||Zn pouch cell to exhibit a cumulative capacity of 4250 mAh cm−2 at areal-capacity of 10 mAh cm−2. More importantly, a 2.3 Ah Zn||Zn0.25V2O5n H2O pouch cell delivers a recorded energy density of 104 Wh Lcell−1 and runs for >70 days under the harsh conditions of low negative/positive electrode ratio (2.2 : 1), lean electrolyte (8 g Ah−1), and high-areal-capacity (≈13 mAh cm−2).  相似文献   
8.
The corrosion, parasitic reactions, and aggravated dendrite growth severely restrict development of aqueous Zn metal batteries. Here, we report a novel strategy to break the hydrogen bond network between water molecules and construct the Zn(TFSI)2-sulfolane-H2O deep eutectic solvents. This strategy cuts off the transfer of protons/hydroxides and inhibits the activity of H2O, as reflected in a much lower freezing point (<−80 °C), a significantly larger electrochemical stable window (>3 V), and suppressed evaporative water from electrolytes. Stable Zn plating/stripping for over 9600 h was obtained. Based on experimental characterizations and theoretical simulations, it has been proved that sulfolane can effectively regulate solvation shell and simultaneously build the multifunctional Zn-electrolyte interface. Moreover, the multi-layer homemade modular cell and 1.32 Ah pouch cell further confirm its prospect for practical application.  相似文献   
9.
Constructing multifunctional interphases to suppress the rampant Zn dendrite growth and detrimental side reactions is crucial for Zn anodes. Herein, a phytic acid (PA)-ZnAl coordination compound is demonstrated as a versatile interphase layer to stabilize Zn anodes. The zincophilic PA-ZnAl layer can manipulate Zn2+ flux and promote rapid desolvation kinetics, ensuring the uniform Zn deposition with dendrite-free morphology. Moreover, the robust PA-ZnAl protective layer can effectively inhibit the hydrogen evolution reaction and formation of byproducts, further contributing to the reversible Zn plating/stripping with high Coulombic efficiency. As a result, the Zn@PA-ZnAl electrode shows a lower Zn nucleation overpotential and higher Zn2+ transference number compared with bare Zn. The Zn@PA-ZnAl symmetric cell exhibits a prolonged lifespan of 650 h tested at 5 mA cm−2 and 5 mAh cm−2. Furthermore, the assembled Zn battery full cell based on this Zn@PA-ZnAl anode also delivers decent cycling stability even under harsh conditions.  相似文献   
10.
The development of flexible zinc-air batteries (FZABs) has attracted broad attention in the field of wearable electronic devices. Gel electrolyte is one of the most important components in FZABs, which is urgent to be optimized to match with Zn anode and adapt to severe climates. In this work, a polarized gel electrolyte of polyacrylamide-sodium citric (PAM-SC) is designed for FZABs, in which the SC molecules contain large amount of polarized −COO functional groups. The polarized −COO groups can form an electrical field between gel electrolyte and Zn anode to suppress Zn dendrite growth. Besides, the −COO groups in PAM-SC can fix H2O molecules, which prevents water from freezing and evaporating. The polarized PAM-SC hydrogel delivers a high ionic conductivity of 324.68 mS cm−1 and water retention of 96.85 % after being exposed for 96 h. FZABs with the PAM-SC gel electrolyte exhibit long cycling life of 700 cycles at −40 °C, showing the application prospect under extreme conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号