首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   22篇
  国内免费   89篇
化学   296篇
力学   29篇
数学   178篇
物理学   115篇
  2024年   1篇
  2023年   28篇
  2022年   16篇
  2021年   25篇
  2020年   22篇
  2019年   26篇
  2018年   14篇
  2017年   36篇
  2016年   24篇
  2015年   22篇
  2014年   44篇
  2013年   66篇
  2012年   36篇
  2011年   40篇
  2010年   27篇
  2009年   40篇
  2008年   22篇
  2007年   32篇
  2006年   17篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
  1973年   1篇
排序方式: 共有618条查询结果,搜索用时 31 毫秒
1.
Understanding the complicated failure mechanisms of hierarchical composites such as fiber yarns is essential for advanced materials design. In this study, we developed a new Monte Carlo model for predicting the mechanical properties of fiber yarns that includes statistical variation in fiber strength. Furthermore, a statistical shear load transfer law based on the shear lag analysis was derived and implemented to simulate the interactions between adjacent fibers and provide a more accurate tensile stress distribution along the overlap distance. Simulations on two types of yarns, made from different raw materials and based on distinct processing approaches, predict yarn strength values that compare favorably with experimental measurements. Furthermore, the model identified very distinct dominant failure mechanisms for the two materials, providing important insights into design features that can improve yarn strength.  相似文献   
2.
Silicoaluminophosphates (SAPOs) with different pore structures were synthesized through the implementation of polyethylene glycol (PEG) as a mesopores impregnation agent. Using PEGs with different molecular weights (MWs) and concentrations in the synthesis precursor, several samples were synthesized and characterized. Applying a PEG capping agent to the precursors led to the formation of tuned mesopores within the microporous matrix of the SAPO. The effects of the PEG molecular weight and PEG/Al molar ratio were investigated to maximize the efficiency of the catalyst in the methanol-to-olefin (MTO) process. Using PEG with a MW of 6000 resulted in the formation of both Zeolite Rho and chabazite structural frameworks (i.e., DNL-6 and SAPO-34). Pure SAPO-34 samples were successfully prepared using PEG with a MW of 4000. Our results showed that the PEG concentrations affect the porosity and acidity of the synthesized materials. Furthermore, the SAPO-34 sample synthesized with PEG (MW of 4000) and a PEG/Al molar ratio of 0.0125 showed a superior catalytic stability in the MTO reaction owing to the tuned bi-modal porosity and tailored acidity pattern. Finally, through reactivation experiments, it was found that the catalyst is stable even after several regeneration cycles.  相似文献   
3.
The combination of multiple components or structures into integrated micro/nanostructures for practical application has been pursued for many years. Herein, a series of hierarchical organic microwires with branch, core/shell (C/S), and branch C/S structures are successfully constructed based on organic charge transfer (CT) cocrystals with structural similarity and physicochemical tunability. By regulating the intermolecular CT interaction, single microwires and branch microstructures can be integrated into the C/S and branch C/S structures, respectively. Significantly, the integrated branch C/S microwires, with multicolor waveguide behavior and branch structure multichannel waveguide output characteristics, can function as an optical logic gate with multiple encoding features. This work provides useful insights for creating completely new types of organic microstructures for integrated optoelectronics.  相似文献   
4.
Cellulose aerogels are plagued by intermolecular hydrogen bond-induced structural plasticity, otherwise rely on chemicals modification to extend service life. Here, we demonstrate a petrochemical-free strategy to fabricate superelastic cellulose aerogels by designing hierarchical structures at multi scales. Oriented channels consolidate the whole architecture. Porous walls of dehydrated cellulose derived from thermal etching not only exhibit decreased rigidity and stickiness, but also guide the microscopic deformation and mitigate localized large strain, preventing structural collapse. The aerogels show exceptional stability, including temperature-invariant elasticity, fatigue resistance (∼5 % plastic deformation after 105 cycles), high angular recovery speed (1475.4° s−1), outperforming most cellulose-based aerogels. This benign strategy retains the biosafety of biomass and provides an alternative filter material for health-related applications, such as face masks and air purification.  相似文献   
5.
Pore environment and aggregated structure play a vital role in determining the properties of porous materials, especially regarding the mass transfer. Reticular chemistry imparts covalent organic frameworks (COFs) with well-aligned micro/mesopores, yet constructing hierarchical architectures remains a great challenge. Herein, we reported a COF-to-COF transformation methodology to prepare microtubular COFs. In this process, the C3-symmetric guanidine units decomposed into C2-symmetric hydrazine units, leading to the crystal transformation of COFs. Moreover, the aggregated structure and conversion degree varied with the reaction time, where the hollow tubular aggregates composed of mixed COF crystals could be obtained. Such hierarchical architecture leads to enhanced mass transfer properties, as proved by the adsorption measurement and chemical catalytic reactions. This self-template strategy was successfully applied to another four COFs with different building units.  相似文献   
6.
Precise regulation of vascular senescence represents a far-reaching strategy to combat age-related diseases. However, the high heterogeneity of senescence, alongside the lack of targeting and potent senolytics, makes it very challenging. Here we report a molecular design to tackle this challenge through multidimensional, hierarchical recognition of three hallmarks commonly shared among senescence, namely, aptamer-mediated recognition of a membrane marker for active cell targeting, a self-immolative linker responsive to lysosomal enzymes for switchable drug release, and a compound against antiapoptotic signaling for clearance. Such senolytic can target and trigger severe cell apoptosis in broad-spectrum senescent endothelial cells, and importantly, distinguish them from the quiescent state. Its potential for in vivo treatment of vascular diseases is successfully illustrated in a model of atherosclerosis, with effective suppression of the plaque progression yet negligible side effects.  相似文献   
7.
Creation of intrapenetrated mesopores with open highway from external surface into the interior of zeolite crystals are highly desirable that can significantly improve the molecular transport and active sites accessibility of microporous zeolites to afford enhanced catalytic properties. Here, different from traditional zeolite-seeded methods that generally produced isolated mesopores in zeolites, nanosized amorphous protozeolites with embryo structure of zeolites were used as seeds for the construction of single-crystalline hierarchical ZSM-5 zeolites with intrapenetrated mesopores (mesopore volume of 0.51 cm3 g−1) and highly complete framework. In this strategy, in contrast to the conventional synthesis, only a small amount of organic structure directing agents and a low crystallization temperature were adopted to promise the protozeolites as the dominant growth directing sites to induce crystallization. The protozeolite nanoseeds provided abundant nucleation sites for surrounding precursors to be crystallized, followed by oriented coalescence of crystallites resulting in the formation of intrapenetrated mesopores. The as-prepared hierarchical ZSM-5 zeolites exhibited ultra-long lifetime of 443.9 hours and a high propylene selectivity of 47.92 % at a WHSV of 2 h−1 in the methanol-to-propylene reaction. This work provides a facile protozeolite-seeded strategy for the synthesis of intrapenetrated hierarchical zeolites that are highly effective for catalytic applications.  相似文献   
8.
基于脱铝多级孔BEA沸石与二氯二茂钛的固相反应,开展了钛掺杂量可调的多级孔Ti-beta后处理工艺制备研究.对制备的多级孔Ti-beta样品的理化性质进行了表征,包括X射线衍射、氮气吸附脱附测试、扫描电镜、透射电镜、紫外可见吸收光谱和紫外拉曼光谱等.结果表明,多级孔BEA沸石具有较好的化学稳定性,脱铝-钛化的后处理过程未对样品多级孔结构产生明显影响. 以环己烯和十二烯的烯烃环氧化为探针反应表征了合成多级孔Ti-beta与纯相微孔Ti-beta沸石的催化性能.结果表明,在小分子环己烯的环氧化反应中,多级孔Ti-beta沸石的催化活性(转化率59.4%)与微孔Ti-beta相当(转化率57.9%);但是在较大分子十二烯的催化反应中,多级孔结构Ti-beta材料的催化性能(转化率11.1%)明显优于纯相微孔材料(转化率6.8%),且产物中环氧化物选择性更高(分别为60.3%和37.8%).  相似文献   
9.
In a previous work [J. Chem. Phys. 140 , 174105 (2014)], we have shown that a mixed quantum classical (MQC) rate theory can be derived to investigate the quantum tunneling effects in the proton transfer reactions. However, the method is based on the high temperature approximation of the hierarchical equation of motion (HEOM) with the Debye-Drude spectral density, and results in a multi-state Zusman type of equation. We now extend this theory to include quantum effects of the bath degrees of freedom. By writing the full HEOM into a multidimensional partial differential equation in phase space, we can define a new reaction coordinate, and the previous method can be generalized to the full quantum regime. The validity of the new method is demonstrated by using numerical examples, including the spin-Boson model, and the double well model for proton transfer reaction. The new method is found to resolve some key problems of the previous theory based on high temperature approximation, including possible numerical instability in long time simulation and wrong rate constant at low temperatures.  相似文献   
10.
The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peonylike CuO micro/nanostructures about 3-5 μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as the building block, were self-assembled into multilayer structures under the action of ethidene diamine, and then grew into uniform peony-like CuO architecture. The novel peony-like CuO micro/nanostructures exhibit a high cycling stability and improved rate capability. The peony-like CuO micro/nanostructures electrodes show a high reversible capacity of 456 mAh/g after 200 cycles, much higher than that of the commercial CuO nanocrystals at a current 0.1 C. The excellent electrochemical performance of peony-like CuO micro/nanostructures might be ascribed to the unique assembly structure, which not only provide large electrode/electrolyte contact area to accelerate the lithiation reaction, but also the interval between the multilayer structures of CuO nanoplates electrode could provide enough interior space to accommodate the volume change during Li~+ insertion and de-insertion process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号