首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3323篇
  免费   761篇
  国内免费   603篇
化学   707篇
晶体学   58篇
力学   503篇
综合类   220篇
数学   1345篇
物理学   1854篇
  2024年   18篇
  2023年   86篇
  2022年   76篇
  2021年   96篇
  2020年   71篇
  2019年   96篇
  2018年   54篇
  2017年   115篇
  2016年   106篇
  2015年   145篇
  2014年   262篇
  2013年   177篇
  2012年   213篇
  2011年   239篇
  2010年   206篇
  2009年   225篇
  2008年   301篇
  2007年   233篇
  2006年   197篇
  2005年   198篇
  2004年   189篇
  2003年   162篇
  2002年   131篇
  2001年   134篇
  2000年   118篇
  1999年   107篇
  1998年   110篇
  1997年   96篇
  1996年   83篇
  1995年   74篇
  1994年   59篇
  1993年   47篇
  1992年   80篇
  1991年   47篇
  1990年   41篇
  1989年   36篇
  1988年   13篇
  1987年   17篇
  1986年   6篇
  1985年   4篇
  1984年   9篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1959年   1篇
排序方式: 共有4687条查询结果,搜索用时 31 毫秒
1.
设K是一个虚二次域,O为K中的一个order.由定义,O的希尔伯特类多项式HO(x)是一个整系数的首一不可约多项式,它的复根恰为所有具有O—复乘的椭圆曲线的j—不变量.设p∈N为一个在K中惯性的素数,且p严格大于|disc(O).若Ho(x)(mod p)的Fp根的所组成的集合非空,我们证明群Pic(O[2]在该集合上有一个自由且传递的作用;因此Ho(x)(mod p)的Fp根的个数要么等于0,要么等于|Pic(O)[2]|.我们还给出了一个关于Fp根存在性的具体判别方法.类似的结果首先由Xiao等人在文献[25]中得到,后又经李等人在文献[13]广泛推广.本文结果已在李等人的工作中出现,但方法与之完全不同.  相似文献   
2.
3.
陈都 《数学通讯》2022,(8):36-37+39
对椭圆的切线和法线有关的三个轨迹问题展开新的探索,发现了三条优美对称的高次曲线和相关长度、距离公式.  相似文献   
4.
对前人建立的标准曲线法测煤中自由基浓度进行优化,以DPPH标准样品和基准样品的二次积分面积比值为新参数,结果显示新参数标准曲线法的实测值与理论值相对误差都在5%以内;重复性、复现性实验的相对标准偏差都小于3%。将新参数标准曲线法用于分析不同煤化程度煤和新疆黑山煤(HS)沥青质的自由基浓度,发现随着煤化程度增加,其煤中自由基浓度逐渐增大,从低阶褐煤的8.531×10~(17)/g上升到高阶无烟煤3.37899×10~(19)/g;而在HS煤液化过程中,随着加氢液化温度的升高,其沥青质自由基浓度逐渐下降,从290℃的1.5793×10~(18)/g降到450℃的7.410×10~(17)/g,沥青质自由基浓度变化趋势与其产率变化趋势相一致。  相似文献   
5.
基于自旋相关局域Hartree-Fock (SLHF)势函数,本文提出了一种计算双原子分子激发态势能的密度泛函理论(DFT)方法,并将该方法应用于和的激发态势能曲线的计算。在只考虑交换能的情况下,本文的DFT计算结果与文献中精确方法和Hartree-Fock (HF)方法的结果符合的非常好,说明采用SLHF势函数作为交换势的DFT方法是一个很好的计算激发态势能的方法。本文还计算和探讨了电子的关联势函数和关联能,发现传统的近似方法在较大核间距的情况下大大低估了电子的关联能.  相似文献   
6.
太赫兹滤波器是太赫兹通信、太赫兹成像和太赫兹检测等太赫兹应用系统中不可或缺的功能器件。按照不同的分类方式,滤波器有不同的种类,常见的按照选频功能可分为高通滤波器、低通滤波器、带阻滤波器和带通滤波器。为了实现在太赫兹波段的滤波效果,世界各地的研究人员利用不同的结构、材料和控制方式实现了功能各异的太赫兹滤波器,但是考虑到设计的器件要应用到太赫兹系统中,成本低廉、结构简单、性能优越的太赫兹滤波器一直是研究人员的追求。分形概念自提出以来在很多研究领域都有了快速发展,但是在太赫兹波段的应用还不是很常见,特别是应用于太赫兹功能器件的设计。引入分形中科赫曲线的概念设计并制备了一种新型的太赫兹带通滤波器,该滤波器是在金属薄膜上刻蚀出科赫曲线分形结构,当太赫兹波垂直入射到该滤波器时候实现了在太赫兹波段的窄带滤波。在滤波器的设计过程中,追求理论与实验相结合,首先在电磁仿真软件中建立科赫曲线分形结构滤波器模型进行计算,探究分形结构应用于太赫兹波段进行滤波的可行性,在进行多次计算之后得到优化后的尺寸和结构,然后根据优化后的尺寸加工出科赫曲线分形结构太赫兹滤波器样品,并且将样品放在太赫兹时域光谱系统中进行实验测量,得到实验数据后与仿真结果进行比较。在仿真中利用了时域有限差分法模拟科赫曲线分形结构太赫兹带通滤波器的传输特性,优化后的仿真结果表明:滤波器的谐振频率为0.715 THz,透射系数能够达到0.92,-3 dB带宽为21.9 GHz,将仿真得到的散射参数进行S参数反演得到了太赫兹滤波器样品的电磁参数,这在理论上分析了太赫兹波在谐振点处产生透射增强的原因。利用飞秒激光微加工系统制备了尺寸优化后的科赫曲线分形结构太赫兹带通滤波器样品,然后使用太赫兹时域光谱系统对样品的传输特性进行测试,对实验得到的时域数据进行快速傅里叶变换之后得到频域数据,再把频域数据进行归一化处理后与之前的电磁仿真结果进行对比,发现实验测得的结果与电磁软件仿真得到的结果较为吻合。  相似文献   
7.
为缩短衰减倍率调整的时间,提高激光参数测试的效率,提出激光光强快速衰减算法。衰减倍率精确调整量由当前衰减倍率和采集到的光斑光强真实的最大灰度值共同决定。当因光电接收器件(CCD)饱和造成采集光斑图像失真时,即衰减倍率过小时,由于激光光斑的光强通常满足高斯分布,通过对光斑图像进行处理,去除饱和部分光强信息,对剩余部分光强信息利用最小二乘法进行三维高斯拟合,还原出激光光斑光强的真实分布并获得最大灰度值;当衰减倍率过大时,根据采集光斑图像可以直接获得当前最大灰度值,最后通过计算获得最佳的衰减倍率调整值,实现了激光光强快速准确的调整。算法的有效性通过步进电机带动的双轮可变衰减器及CCD配合得到验证。  相似文献   
8.
为了对煤矸石集料级配作用进行深入研究,采取煤矸石集料空隙率作为评价指标.试验采用粒径0.16~26.5mm的集料,采用最大密度曲线公式确定煤矸石集料的颗粒级配范围,通过调整最大密度曲线n值,确定集料中各粒径组的比例,结合集料的空隙率,运用灰色关联分析各粒径组比例对集料空隙率的影响.研究结果表明:煤矸石粗集料对空隙率的影响大于煤矸石细集料的影响,当n=0.56时,煤矸石集料的空隙率最小,粗集料的骨架作用和细集料的支承作用最好.  相似文献   
9.
王利娟 《数学进展》2015,(2):254-262
本文主要讨论带有分数阶耗散项的quasi-geostrophic(QG)方程的周期解的大时间性态,并且对初值θ_0没有小性的要求.对于次临界(1/2α1)和临界(α=1/2)两种情况,证明了方程的周期解均具有指数级的衰减性.  相似文献   
10.
周泽友 《力学学报》2020,52(4):1035-1044
湍流场中二阶速度加速度结构函数 (velocity-acceleration structure function, VASF) 被认为与尺度间能量或者拟涡能的传递相关,其正负表明传递的方向. 三维湍流中,能量从大尺度向 小尺度传递,VASF 为负. 在二维湍流中,能量反向传递到大尺度,拟涡能正向传递到小尺度,因此理论上 VASF 无论在反向能量级串区还是在正向拟 涡能级串区均为正. 然而,相对于三维湍流中 VASF 的充分研究,二维湍流中 VASF 的正负性迄今尚无实验或数值模拟数据验证. 本文通过三维二维湍流中普适的公式推导,指出在空间非均匀湍流场中,VASF 除了尺度间传递,还受到非均匀项的影响. 一种常见的空间非均匀湍流场是在实验研究中常用的风洞或水洞中,湍流发生装置 (如栅格) 后的湍流. 该流场中,湍流强度随下游位置增大而逐渐衰减,这种衰减则带来空间上的非均匀性. 本文在基于竖直流动皂膜的二维衰减湍流场中,利用拉格朗日粒子追踪法测得在拟涡能级串区的 VASF,并分析各部分的影响. 结果表明,虽然尺度间传递项为正值,但由于衰减带来的非均匀项为负值,使得 VASF 的值为负,使之失去了表征拟涡能传递方向的意义. 因此,在类似风洞、水洞、水槽等衰减流场中对 VASF 的讨论不应忽略非均匀项. 最后对与 VASF 密切相关的弥散过程进行分析,发现后期弥散过程变慢是由于负的 VASF 导致.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号