首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   28篇
  国内免费   427篇
化学   731篇
晶体学   5篇
力学   1篇
综合类   11篇
物理学   62篇
  2023年   5篇
  2022年   7篇
  2021年   11篇
  2020年   15篇
  2019年   12篇
  2018年   7篇
  2017年   22篇
  2016年   31篇
  2015年   25篇
  2014年   40篇
  2013年   48篇
  2012年   30篇
  2011年   33篇
  2010年   43篇
  2009年   28篇
  2008年   37篇
  2007年   49篇
  2006年   29篇
  2005年   34篇
  2004年   35篇
  2003年   31篇
  2002年   30篇
  2001年   16篇
  2000年   22篇
  1999年   16篇
  1998年   20篇
  1997年   24篇
  1996年   20篇
  1995年   24篇
  1994年   19篇
  1993年   11篇
  1992年   8篇
  1991年   4篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
排序方式: 共有810条查询结果,搜索用时 156 毫秒
1.
2.
3.
采用电化学沉积法制备了聚苯胺(Polyaniline,PANI)纳米棒、树枝状银和纳米颗粒银基体。并利用表面增强拉曼散射光谱技术(Surface-enhanced Raman Scattering,SERS)研究了PANI纳米棒的分子链在Ag金属表面的构象变化。实验结果表明由于Ag金属表面的等离子共振效应,PANI分子中N原子的孤对电子与Ag的自由电子产生共轭效应,使得PANI分子链上的电荷重新分布,结果 C—H面内弯曲振动频率和C—C键的伸缩频率向低波数方向移动(蓝移);拉曼散射频率增强的基团在金属表面倾向垂直于分子链的主轴,拉曼散射频率减弱的基团在金属表面倾向平行于分子链主轴。  相似文献   
4.
利用酰胺化反应将聚苯胺(PANI)共价接枝到氧化石墨烯(GO)的表面,得到的杂化材料GO-PANI能很好地分散在常见的有机溶剂中。样品的XPS谱和红外光谱数据证实了在GO和PANI之间存在酰胺键。在316nm激光激发下,PANI和GO-PANI分别在420nm和416nm处显示出很强的荧光峰。GO-PANI的最大发射峰相对于PANI的发射峰蓝移了4nm,且荧光强度增强。开孔Z-扫描实验结果表明:与PANI相比,GO和PANI的共价键合使材料在532nm激光辐照下表现出更大的非线性消光系数和三阶非线性极化率虚部值,光限幅性能明显增强。  相似文献   
5.
为了克服传统Pt系催化剂价格昂贵、稳定性差的缺点,采用热解新型Ti O2/聚苯胺(PANI)复合物的方法合成了Ti O2/C催化剂.用扫描电子显微镜、X射线光电子能谱、X射线衍射、傅里叶变换红外光谱、拉曼光谱、透射电子显微镜、循环伏安法和线性扫描伏安法等方法研究了热处理和PANI复合比例对复合物的形貌、成键、晶相组成及氧还原性能的影响.结果表明,PANI与Ti O2间存在相互作用,可以抑制Ti O2的团聚和锐钛矿向金红石的转变.热处理制得Ti O2/C的氧还原活性随着PANI载体含量增加先升高后降低,PANI和Ti O2质量比为35/100时,催化剂的氧还原活性最高.同时,循环伏安和时间-电流曲线测试表明,已制备的复合材料在催化氧还原反应进行时具有较好的稳定性.  相似文献   
6.
牛治刚  韩腾 《化学通报》2015,78(1):37-43
合成了自掺杂聚苯胺盐PABSA,并成功应用于醛和乙酸酐的缩醛化反应,发现此聚苯胺盐催化剂具有高效、可回收等特性。同时,利用二元醇作为保护基团,醛也可以转化成相应的缩醛。考察了反应时间、温度和催化剂用量对反应的影响,并通过IR、1H NMR、13C NMR和元素分析对部分产物进行了结构表征。  相似文献   
7.
邹璐  邓超  高颖  邬冰 《燃料化学学报》2015,43(4):507-512
制备了导电高分子聚苯胺与活性炭的复合载体(PAnC),用PAnC作为载体制备的钯催化剂性能优于单独活性炭作为载体制备的催化剂。此外掺杂十二烷基磺酸钠制备的聚苯胺碳载体(PAnC-S)具有比PAnC更低的电荷传递电阻,10~25 nm的介孔数量明显增加,比表面积增大到94.9 m2/g。PAnC-S与PAnC粒径均匀,粒径均在30 nm左右。以PAnC-S和 PAnC为载体制备的钯催化剂比活性炭作载体制备的钯催化剂具有更大的电化学比表面积,分别为84.7和62.6 m2/g。对甲酸的氧化具有更高的电化学活性和稳定性。  相似文献   
8.
吕亦同  胡江磊  张龙 《应用化学》2017,34(6):636-643
报道了一种高溶解性导电聚苯胺(PANI)的制备方法,以聚2-丙烯酰胺-2-甲基丙磺酸(PAMPS)作为掺杂酸和乳化剂,利用其特有的长链、亲水性及强酸性基团效应,通过乳液聚合法一步合成出具有较高溶解性的导电聚苯胺。利用核磁共振光谱仪(NMR)、傅里叶红外光谱仪(FT-IR)和扫描电子显微镜(SEM)等技术手段对产物结构和性能进行了表征分析。结果表明,在m(苯胺)∶m(AMPS)∶m(APS)=1∶2∶1.5;AMPS质量分数为20%;APS质量分数为30%;反应时间为5 h;反应温度为5℃的条件下,聚苯胺的产率高达86%,在有机溶剂二甲基甲酰胺(DMF)中的溶解度可达0.3814 g/g,在水中的溶解度可达0.2123 g/g,电导率达5.9 S/cm。  相似文献   
9.
胡强  王华  向飞菲  郑荞佶  马新国  霍瑜  谢奉妤  徐成刚  赁敦敏  胡吉松 《催化学报》2021,42(6):980-993,中插17-中插23
理论容量大且过电位低的层状氢氧化物(LDHs)是极有前景的超级电容电池和析氧反应的电极材料;然而,体相LDHs的低电导率和活性位点不足增加了电极的内阻,降低了电极容量和产氧效率.本文采用两步法制备了聚苯胺包覆的MoO42?插层的镍钴层状双金属氢氧化物复合电极(M-LDH@PANI).随着LDH中MoO42?含量的增加,针状的LDH微球逐渐演化为具有较高比表面积的片状M-LDH微球,这为整个电极提供了更多的电化学位点.此外,非晶态的聚苯胺包覆提高了复合电极的电导率.在引入适量MoO42?插层离子时,M-LDH@PANI表现出显著强化的储能和催化性能.所获得的M-LDH@PANI-0.5在析氧反应中表现出优越的电催化活性(10 mA cm?2时的过电位为266 mV),作为超级电容电池电极则具有864.8 C g?1的高容量.采用M-LDH@PANI-0.5作为正极及以活性炭作为负极组装的超级电容电池在功率密度为8,300.0 W kg?1时能量密度为44.6 Wh kg?1,且具有优异的循环稳定性(10000次循环后保留83.9%的初始容量).本文为LDH基材料的阴离子插层改性增强材料性能的机理提供了一个非传统的解释.在上述研究基础上,采用射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)和比表面积测试(BET)等手段对样品进行了深入表征.XRD结果表明,MoO42?插层的LDH材料的层间晶面(003)的峰随着MoO42?含量的增加而逐渐消失,这是由于晶面间距越大越容易受到晶粒细化的影响,间距大的晶格更容易受到破坏,导致晶格的展宽和弱化,从而间接证明MoO42?的成功插层.SEM、HRTEM和BET测试结果表明,MoO42?的含量对材料的形貌和比表面积具有重大影响.利用XPS对样品的价态进行了研究,发现随着MoO42?含量的增加,Co和Ni的价态没有明显变化.电化学测试结果表明,电极的储能和催化性能随MoO42?含量的增加而先增加后减小.利用理论计算分析了MoO42?在LDH中的插层行为,发现少量的MoO42?有利于扩大LDH的层间间距,而过量的MoO42?则会与LDH的H原子结合,从而与电解液中的OH?竞争,导致复合电极的电化学性能下降.此外,MoO42?插层的片状微球能有效调节材料的去质子化能,大大加速电极表面的氧化还原反应.因此,MoO42?插层能够显著强化LDH基材料的超级电容电池电极和OER催化剂电化学性能.  相似文献   
10.
石墨烯/聚苯胺复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
以苯胺和氧化石墨烯(GO)为原料, 采用电化学方法制备了石墨烯/聚苯胺(GP)复合材料. 利用X射线衍射(XRD)、扫描电镜(SEM)、拉曼(Raman)光谱、X射线光电子能谱分析(XPS)对其结构、微观形貌进行了表征,并对复合材料电化学性能进行了测试. 结果表明, 复合材料保持了石墨烯的基本形貌, 聚苯胺颗粒均匀地分散在石墨烯表面, 复合材料在500 mA·g-1的电流密度下比电容达到352 F·g-1, 1000 mA·g-1下比电容为315 F·g-1, 经过1000 次的充放电循环后容量保持率达到90%, 远大于石墨烯和聚苯胺单体的比电容. 复合材料放电效率高, 电解质离子易于在电极中扩散和迁移.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号