首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3027篇
  免费   784篇
  国内免费   1788篇
化学   1626篇
晶体学   48篇
力学   192篇
综合类   171篇
数学   1036篇
物理学   2526篇
  2024年   16篇
  2023年   88篇
  2022年   100篇
  2021年   91篇
  2020年   105篇
  2019年   100篇
  2018年   84篇
  2017年   134篇
  2016年   120篇
  2015年   120篇
  2014年   245篇
  2013年   217篇
  2012年   210篇
  2011年   212篇
  2010年   209篇
  2009年   239篇
  2008年   244篇
  2007年   232篇
  2006年   238篇
  2005年   253篇
  2004年   227篇
  2003年   216篇
  2002年   200篇
  2001年   199篇
  2000年   150篇
  1999年   137篇
  1998年   133篇
  1997年   131篇
  1996年   157篇
  1995年   122篇
  1994年   155篇
  1993年   111篇
  1992年   112篇
  1991年   107篇
  1990年   82篇
  1989年   70篇
  1988年   12篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
排序方式: 共有5599条查询结果,搜索用时 78 毫秒
1.
2.
简述了布洛赫的生平,回顾了他由测量中子磁矩,进而实现凝聚物质中核磁共振和对核磁共振早期研究中的创新经历;论述了由冥思苦想得到灵感思维,不畏艰辛不辞劳苦,重视学科间交叉融合等是他成功的因素.  相似文献   
3.
初步研究了男性个体辐射敏感性的鉴定方法及标准。采集50名男性志愿者的外周血,分别给予不同剂量X射线照射,采用细胞松弛素B阻断双核法测定微核率(MNF),通过二阶多项拟合法,绘制微核剂量效应选项中心标准曲线,将个人微核剂量效应曲线与标准曲线比对后判断个体辐射敏感性。 $0.0\sim2.5 $ Gy剂量范围内,剂量效应二阶多项拟合的中心方程为(MNF=0.014 7+0.036 2D+0.023 1D 2, r=0.726)。50名志愿者中,辐射敏感的有13人,辐射抗性的有14人,基本符合正态分布。Spearman秩和相关分析结果显示,MNF在各个辐射剂量点与辐射敏感性均存在正相关,与辐射抗性呈负相关,MNF随剂量增加而增加。本研究初步建立了“以线代点”男性个体辐射敏感性鉴定方法,并发现男性外周血淋巴细胞的本底微核率与个体辐射敏感性呈正相关。  相似文献   
4.
王涛  丛佩玺  石荣荣  周书  梁鹏 《强激光与粒子束》2021,33(12):123009-1-123009-5
高空核电磁脉冲(HEMP)对电子设备的耦合途径主要有两方面:一方面是通过装备(产品)上的天线耦合通道进入到电子系统内的“前门耦合”方式;另一方面则是“后门耦合”,即通过装备(产品)上的壳体、电源线、电缆、机箱的缝隙、孔洞等途径进行耦合。主要研究电气线路互联系统(EWIS)线缆抗高空核电磁脉冲耦合效应,通过研究HEMP干扰的特征、能量分布,搭建HEMP数学模型,采用控制变量法,改变EWIS线缆类型、离地高度等要素,通过在CST上建立仿真模型以及开展试验,分析HEMP对电子设备造成的影响程度,得到HEMP耦合效应的一般性结论与规律。  相似文献   
5.
为理解绕水翼云空化流动的发展机理和探究水翼吸力面开孔射流的影响,采用密度 修正的RNG $k$-$\varepsilon $湍流模型和Schnerr-Sauer空化模型对原始NACA66(mod) 水翼和采用射流后的 水翼的云空化非定常过程进行模拟和对比分析;采用在水翼吸力面近壁区设立监测线的方法对近壁区的流场进行监测,得到 近壁区汽相体积分数、回射流速度、压力及压力梯度的时空分布云图;开展了云空化流场特性的涡动力学分析,进而分析水 翼云空化的发生机理和射流抑制空化的抑制机理. 结果表明:游离型空泡在下游溃灭时产生强烈的局部高压,其向上游传播 导致前缘空穴的一次回缩,而空穴的二次回缩受回射流的影响. 回射流的发展区域受限于较高的压力梯度,高的压力梯度一 直存在,但回射流在一个周期内的首次出现需要时间的积累. 在水翼吸力面射流使得射流孔附近压力升高,弥补了由于空化 和绕流造成的压降,压力梯度增大,抗逆压能力增强,对回射流起到阻挡作用;另一方面,射流使得回射流区域面积和回射 流的强度也有所减小,从而对云空化的发展起到抑制的效果. $Q$准则的涡结构云图相比于汽相体积分数云图能显示复杂的 流动结构,前缘附着型空穴和尾缘游离型空穴内存在旋涡,回射流对空穴存在剪切作用造成空穴脱落. 而射流对空穴和回射 流的剪切和阻挡使云空化发展得到抑制.   相似文献   
6.
为了探究超声搅拌磁流变抛光液的制备及优化工艺,利用多物理场数值计算方法,建立了超声搅拌磁流变抛光液的声场仿真模型,并进行了频域分析。研究了不同液位深度、超声变幅杆探入深度,不同功率下磁流变抛光液的声场分布。通过测量磁流变抛光液的声场强度对声场仿真进行了验证。结果表明:随着距变幅杆距离的增加,声强逐渐减弱,高声强区域主要分布在换能器轴线附近。声强在距变幅杆20mm范围内急剧衰减,变幅杆最佳探入深度为10mm,增大功率有助于空化区域的扩大。声场仿真结果与实验测量结果基本一致,对磁流变抛光液的制备提供了数值计算基础。  相似文献   
7.
曾赛  杜选民  范威 《应用声学》2020,39(3):482-491
水下对转螺旋桨流致辐射噪声的预报对于水下目标的特征提取和分类识别具有重要意义。由桨叶的旋转引起的湍流场是水下对转螺旋桨流致辐射噪声的源场。分述了水下对转螺旋桨湍流边界层脉动、旋转干涉效应和空化效应引发的水动力噪声机制和研究进展,比较了目前工程应用中的3种对转螺旋桨流致辐射噪声预报方法的特点。在分析对转螺旋桨流致辐射噪声数值预报难点的基础上,综述了对转螺旋桨流致辐射噪声计算方法的研究进展,指出间接数值模拟方法是工程中进行对转螺旋桨流致辐射噪声预报的有效方法。  相似文献   
8.
优化超声变幅杆的形状结构可有效地提高水域声场分布和空化区域,提升对水域超声空化效果。通过模拟分析发现传统超声变幅杆在水域中具有声场分布均匀性差、变幅杆端部声压高等特征,不利于声波在水域中传播。基于此,提出并优化设计了一种具有碟形结构的变幅杆,位于变幅杆的最大振幅处的碟形结构,有更大的振动位移;模拟表明其水域声场和声压均衡度显著优于传统变幅杆,铝箔空化腐蚀实验进一步证实了其水域中的声压分布均匀性。同时,实验通过铝箔的空化腐蚀、KI剂量测定及工件表面油渍去除对比了传统变幅杆和碟形变幅杆,分析表明碟形变幅杆所在水域中有较大的空化腐蚀区域,腐蚀速率明显提升,声化学反应速率提高,油渍去除程度增强,说明了设计的碟形变幅杆能够促进空化泡的产生,增加水域空化区域。  相似文献   
9.
采用简便的尿素辅助沉淀法将Gd2O3∶Tb3+成功包覆在二氧化硅微球表面合成了尺寸均匀的球形SiO2@Gd2O3∶Tb3核壳发光材料,解决了稀土发光材料普遍存在的形貌可控性差和颗粒尺寸不均一等问题.利用XRD、SEM、红外光谱和荧光光谱等表征测试了样品的形貌、结构和发光性能.SEM照片和尺寸分布图显示,SiO2@Gd2O3∶Tb3+粒子呈现均匀球形形貌,分散性良好,粒径约(608 +18) nm.XRD图谱分析表明,600℃煅烧后,壳层Gd(OH)3CO3完全转变为立方相Gd2O3,结晶性良好,无杂相生成.同时,结合红外光谱推测了SiO2@Gd2O3∶Tb3核壳微球的形成机理,并得出Gd2O3∶Tb3+壳层主要以Si-O-Gd键形式连接在二氧化硅微球表面.在240 nm紫外光激发下,SiO2@Gd2O3∶Tb3核壳微球呈现绿光发射,其中,位于540 nm处的主峰归属于Tb3+的5D4→7F5能级跃迁.不同Tb3掺杂浓度下的发射光谱表明,当Tb3+掺杂浓度为4mol;时,SiO2@Gd2O3∶Tb3+核壳微球的发射强度达到最大值,寿命为1.55 ms,色坐标位于绿色区域,展现了良好的绿光发光性能.  相似文献   
10.
采用水热碳化法成功制备了不同碳含量的CdS@C纳米颗粒,同时对CdS@C的晶体结构、形貌、光学性能、光电化学和光催化性能进行了研究。实验结果表明本方法制备的碳包覆CdS纳米颗粒外壳为碳层,内核为六方纤锌矿结构CdS颗粒。CdS@C颗粒分散性良好,颗粒形貌主要为类球形,粒度均匀。X射线光电子能谱(XPS)证实CdS@C颗粒表面负载的碳主要以非晶碳形式存在。紫外-可见光光谱(UV-Vis)表明CdS@C纳米晶中表面碳的敏化作用提高了可见光响应范围,使得能隙变窄。光致发光光谱(PL)表明碳包覆CdS@C纳米颗粒的发光强度比纯CdS弱,有效抑制了光生载流子的复合。瞬态光电流响应和电化学阻抗谱(EIS)说明CdS@C纳米复合材料更有效促进电子-空穴对分离和提高转移效率。CdS@C纳米复合材料在可见光辐射下表现出良好的光催化活性和稳定性,其中·O2-和h+在光催化中起主要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号