首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2857篇
  免费   978篇
  国内免费   335篇
化学   1980篇
晶体学   226篇
力学   80篇
综合类   40篇
数学   7篇
物理学   1837篇
  2024年   2篇
  2023年   21篇
  2022年   55篇
  2021年   85篇
  2020年   89篇
  2019年   90篇
  2018年   68篇
  2017年   123篇
  2016年   192篇
  2015年   178篇
  2014年   221篇
  2013年   367篇
  2012年   258篇
  2011年   257篇
  2010年   203篇
  2009年   186篇
  2008年   182篇
  2007年   212篇
  2006年   196篇
  2005年   177篇
  2004年   162篇
  2003年   151篇
  2002年   81篇
  2001年   53篇
  2000年   62篇
  1999年   62篇
  1998年   84篇
  1997年   83篇
  1996年   57篇
  1995年   62篇
  1994年   35篇
  1993年   27篇
  1992年   13篇
  1991年   11篇
  1990年   13篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有4170条查询结果,搜索用时 15 毫秒
1.
黄鸣  王维 《人工晶体学报》2022,51(4):594-599
光伏产业的发展使得对硅材料的需求日益增加,同时硅单晶生产行业竞争也日趋激烈。作为生产硅单晶的重要装备,单晶炉的稳定性和可靠性关系到硅单晶生产效率的提升和成本的下降,因此其驱动系统的设计和优化成为装备制造的关键环节。本文以NVT-HG2000-V1型硅单晶生长炉的驱动系统为研究对象,用SolidWorks三维建模实现虚拟装配,采用ADAMS建立其动力学仿真模型,并对驱动系统的运动过程进行仿真模拟。采用控制变量法定量分析了铜套与升降轴的配合间隙及丝杠参数对驱动力和驱动力矩的影响规律,进而在提高硅单晶生长炉装备稳定性和可靠性方面给出合理的技术建议。结果表明,铜套与升降轴的配合间隙达到0.071 mm后能有效降低驱动系统运行所需驱动力矩,丝杠倾斜度、螺纹螺距与螺纹间摩擦系数的增大均会导致驱动系统运行所需力矩大幅增加。  相似文献   
2.
Abstract

In this study, the photovoltaic organic-inorganic structures were created by deposition of poly(3,4-ethylenedioxythiophene) film doped by poly(styrenesulfonate) and reduced graphene oxide on the porous silicon/silicon substrate. Formation of the hybrid structure was confirmed by means of atomic-force microscopy and Fourier transform infrared spectroscopy. The current-voltage characteristics of the obtained structures were studied. It was found the increase of electrical conductivity and photo-induced signal in organic-inorganic structures. Temporal parameters and spectral characteristics of photoresponse in the 400–1100?nm wavelength range were investigated. The widening of spectral photosensitivity in a short-wavelength range due to light absorption in various layers of the multijunction structure in comparison with single crystal silicon was revealed.  相似文献   
3.
晶体硅表面钝化是高效率晶体硅太阳能电池的核心技术,直接影响晶体硅器件的性能。本文采用第一性原理方法研究了一种超强酸-双三氟甲基磺酰亚胺(TFSI)钝化晶体硅(001)表面。研究发现,TFSI的四氧原子结构能够与Si(001)表面Si原子有效成键,吸附能达到-5.124 eV。电子局域函数研究表明,TFSI的O原子与晶体硅表面的Si的成键类型为金属键。由态密度和电荷差分密度分析可知,Si表面原子的电子向TFSI转移,从而有效降低了Si表面的电子复合中心,有利于提高晶体硅的少子寿命。Bader电荷显示,伴随着TFSI钝化晶体硅表面的Si原子,表面Si原子电荷电量减少,而TFSI中的O原子和S原子电荷电量相应增加,进一步证明了TFSI钝化Si表面后的电子转移。该工作为第一性原理方法预测有机强酸钝化晶体硅表面的钝化效果提供了数据支撑。  相似文献   
4.
A novel N‐doped MoO 3 @SiC hollow nanosphere has been synthesized through two steps. Due to the first step, N‐doped MoO2@C nanosphere was synthesized using the hydrothermal method and in the second step, Si‐C bonds were formed through the low‐temperature magnesiothermic method and MoO 3 @SiC hollow nanosphere was produced. The prepared nanostructures were identified by various techniques such as IR, XRD, XPS, BET/BJH, SEM/EDS, and Raman spectroscopy. Results show that converting of C to SiC increase the surface area from 17 to 241 m2/g with remarkably decrease in pore diameter. Also, molybdenum is present in the form of MoO2 in carbon catalyst while during magnesiothermic process, it transfers to MoO3 form in the SiC catalyst. The synthesized products were employed as catalysts in oxidative desulfurization of model fuel. The results displayed that MoO 3 @SiC hollow nanostructure shows a superior catalytic activity (99.9%, 40 min) compared to C support (56%, 60 min). Furthermore, the recycling of MoO2@C catalyst shows a dramatic decrease even after the first run, while, SiC support exhibit higher stability during the stronger interaction between molybdenum catalyst and SiC support.  相似文献   
5.
The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV, GeIV, and TiIV. Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV, GeIV, and TiIV, and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.  相似文献   
6.
Based on the surface passivation of n-type silicon in a silicon drift detector(SDD), we propose a new passivation structure of SiO2/Al2O3/SiO2 passivation stacks. Since the SiO2 formed by the nitric-acid-oxidation-of-silicon(NAOS)method has good compactness and simple process, the first layer film is formed by the NAOS method. The Al2O3 film is also introduced into the passivation stacks owing to exceptional advantages such as good interface characteristic and simple process. In addition, for requirements of thickness and deposition temperature, the third layer of the SiO2 film is deposited by plasma enhanced chemical vapor deposition(PECVD). The deposition of the SiO2 film by PECVD is a low-temperature process and has a high deposition rate, which causes little damage to the device and makes the SiO2 film very suitable for serving as the third passivation layer. The passivation approach of stacks can saturate dangling bonds at the interface between stacks and the silicon substrate, and provide positive charge to optimize the field passivation of the n-type substrate.The passivation method ultimately achieves a good combination of chemical and field passivations. Experimental results show that with the passivation structure of SiO2/Al2O3/SiO2, the final minority carrier lifetime reaches 5223 μs at injection of 5×1015 cm-3. When it is applied to the passivation of SDD, the leakage current is reduced to the order of nA.  相似文献   
7.
The reaction of a metastable SiCl2 solution with the sterically less‐demanding carbene N,N‐diisopropylimidazo‐2‐ylidene (IPr) yields the salt [(IPr3Si3Cl5)+]Cl? ( 1 ‐Cl), containing a silyl cation with a Si3 backbone. Salt 1 is highly reactive, but it can be used as a reagent in deuterated dichloromethane, whereby dehalogenation with Me3SiOTf (OTf=O3SCF3) gives the dicationic silyl halide [(IPr3Si3Cl4)]2+ 2 . Quantum chemical calculations show that the HOMO is localized at the negatively charged central silicon atom of 1 and 2 , and thus although both compounds are cations they are better described as silanides, which was also corroborated by NMR investigations.  相似文献   
8.
The requirement for nitric oxide (NO) of lysosomes has motivated the development of a sophisticated fluorescent probe to monitor the distribution of this important biomolecule at the subcellular level in living cells. A near‐infrared (NIR) fluorescent Si‐rhodamine (SiRB)‐NO probe was designed based on the NO‐induced ring‐opening process of Si‐rhodamine. The probe exhibits fast chromogenic and fluorogenic responses, and high sensitivity and selectivity toward trace amounts of NO. Significantly, the spirolactam in Si‐rhodamine exhibits very good tolerance to H+, which in turn brings extremely low background fluorescence not only in the physiological environment but also under acidic conditions. The stability of the highly fluorescent product in acidic solution provides persistent fluorescence emission for long‐term imaging experiments. To achieve targeted imaging with improved spatial resolution and sensitivity, an efficient lysosome‐targeting moiety was conjugated to a SiRB‐NO probe, affording a tailored lysosome‐targeting NIR fluorescent Lyso‐SiRB‐NO probe. Inheriting the key advantages of its parent SiRB‐NO probe, Lyso‐SiRB‐NO is a functional probe that is suited for monitoring lysosomal NO with excellent lysosome compatibility. Imaging experiments demonstrated the monitoring of both exogenous and endogenous NO in real time by using the Lyso‐SiRB‐NO probe.  相似文献   
9.
Two silylene‐spaced ((E)‐vinylsilyl)anthracene‐dipyrromethane dyads have been designed and synthesized by RhCl(PPh3)3‐catalyzed hydrosilylation reactions of 5‐methyl‐5′‐(ethynylaryl)dipyrromethanes with (9‐Anthryl)‐dimethylsilane. The complexation studies of dyads toward different anions have also been performed, which reveal that dyads exhibit a highly selective response towards fluoride anion attributable to both hydrogen‐bonding and pentacoordination phenomena. This dual‐mode fluoride recognition event is unprecedented and may pave the way for future developments in the areas of porphyrinoids, organosilicon, polymer, and supramolecular chemistry.  相似文献   
10.
Abstract

This work presents on improvement in gravimetric measurement for determining the porosity and thickness of microporous silicon. Herein, the corrosion of fresh macroporous silicon (f-MPSi) in 1.0?M NaOH with different concentrations of polyethylene glycol (PEG 200/400/600) was studied by weight loss measurement and scanning electron microscopy (SEM). The results showed that the corrosion rate decreased with increasing polyethylene glycol concentration, and increased with an increase in temperature. Polyethylene glycol can inhibit the corrosion of f-MPSi in NaOH solution. Moreover, 1.0?M NaOH/PEG 600 (10%) can be used as the optimized solution to remove f-MPSi for measuring its porosity and thickness by gravimetric measurement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号