首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2755篇
  免费   658篇
  国内免费   84篇
化学   3011篇
晶体学   44篇
力学   3篇
综合类   2篇
数学   2篇
物理学   435篇
  2023年   9篇
  2022年   12篇
  2021年   57篇
  2020年   144篇
  2019年   112篇
  2018年   66篇
  2017年   76篇
  2016年   183篇
  2015年   211篇
  2014年   231篇
  2013年   258篇
  2012年   248篇
  2011年   217篇
  2010年   250篇
  2009年   239篇
  2008年   244篇
  2007年   221篇
  2006年   214篇
  2005年   165篇
  2004年   158篇
  2003年   119篇
  2002年   14篇
  2001年   11篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   19篇
  1996年   4篇
  1995年   2篇
  1990年   2篇
  1985年   1篇
排序方式: 共有3497条查询结果,搜索用时 31 毫秒
1.
2.
A new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non-linear optical properties of those ribbons.  相似文献   
3.
The growth of Li dendrites hinders the practical application of lithium metal anodes (LMAs). In this work, a hollow nanostructure, based on hierarchical MoS2 coated hollow carbon particles preloaded with sulfur (C@MoS2/S), was designed to modify the LMA. The C@MoS2 hollow nanostructures serve as a good scaffold for repeated Li plating/stripping. More importantly, the encapsulated sulfur could gradually release lithium polysulfides during the Li plating/stripping, acting as an effective additive to promote the formation of a mosaic solid electrolyte interphase layer embedded with crystalline hybrid lithium-based components. These two factors together effectively suppress the growth of Li dendrites. The as-modified LMA shows a high Coulombic efficiency of 98 % over 500 cycles at the current density of 1 mA cm−2. When matched with a LiFePO4 cathode, the assembled full cell displays a highly improved cycle life of 300 cycles, implying the feasibility of the proposed LMA.  相似文献   
4.
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   
5.
Systematic design and self-assembly of metal–organic polyhedra with predictable configurations has been a long-standing challenge in crystal engineering. Herein a concave polyoxovanadate cluster, [V6O6(OCH3)9(SO4)4]5−, which can be generated in situ under specific reaction conditions, is reported. Based on this cluster, a potential trivalent molecular building block, [V6O6(OCH3)9(SO4)(CO2)3]2−, can be obtained by the bridging-ligand-substitution strategy and it possesses appropriate angle information for the design of molecular cubes. Utilizing the face-directed assembly of the trivalent molecular building block and a diverse set of tetratopic carboxylate linkers, a series of metal–organic cubes ( VMOC-1 – VMOC-5 ) with the same topology but different functionalities and dimensions were designed and constructed. An inclusion study using VMOC-3 shows that they are potential molecular receptors for selective capture of size-matching polycyclic aromatic hydrocarbon guest molecules.  相似文献   
6.
In this paper, the gas-sensing properties of copper oxide porous nanosheets in amorphous and highly crystalline states were comparatively investigated on the premise of almost the same specific surface area, morphology and size. Unexpectedly, the results show that amorphous copper oxide porous nanosheets have much better gas sensing properties than highly crystalline copper oxide to a serious of volatile organic compounds, and the lowest detection limit (LOD) of the amorphous copper oxide porous nanosheets to methanal is even up to 10 ppb. By contrast, the LOD of the highly crystalline copper oxide porous nanosheets to methanal is 95 ppb. Experiments prove that the oxygen vacancies contained in the amorphous copper oxide porous nanosheets play a key role in improving gas sensitivity, which greatly improve the chemical activity of the materials, especially for the adsorption of molecules containing oxygen-groups such as methanal and oxygen.  相似文献   
7.
Immobilization of metal ions onto inorganic supports has very interesting biological, industrial, and catalysis applications. In this study, CoFe2O4@SiO2@PUF@Zn(OAc)2 nanostructure was successfully fabricated by immobilization of zinc acetate on the surface of poly(urea-formaldehyde) supported on magnetic CoFe2O4@SiO2 nanoparticles through a layer-by-layer assembly. The structure of hybrid nanoparticles was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy, and transmission electron microscopy. Zinc-poly(urea-formaldehyde) supported on magnetic nanoparticles (MNPs@SiO2@PUF@Zn) was successfully used for the synthesis of spirooxindolopyran and spirooxindoloxanthene derivatives in aqueous medium as an environmentally benign condition. High yields, short reaction times, green solvent, reusability without significant reduction in catalytic activity, and simple separation of the catalyst using an external magnet along with environmental compatibility are some benefits of this procedure.  相似文献   
8.
Water plays a pivotal role in structural stability of supramolecular pigment assemblies designed for natural light harvesting (for example, chlorosome antenna complex) as well as their artificial analogs. However, the dynamic role of water in the context of excite-state relaxation has not been explored till date, which we report here. Using femtosecond transient absorption spectroscopy, we investigate the excited-state dynamics of two types of nano-scale assemblies of chlorophyll a with different structural motifs, rod-shaped and micellar assemblies, that depend on the water content. We show how water participates in excess energy dissipation by vibrational cooling of the non-thermally populated Qy band at different rates in different types of clusters but exhibits no polar solvation dynamics. For the micelles, we observe a bifurcation of stimulated emission line shape, whereas a positive-to-negative switching of differential absorption is observed for the rods; both these observations are correlated with their specific structural aspects. Density functional theory calculations reveal two possible stable ground state geometries of dimers, accounting for the bifurcation of line shape in micelles. Thus, our study elucidates water-mediated structure–function relationship within these pigment assemblies.  相似文献   
9.
Efficient sensing of trace amount nitroaromatic (NAC) explosives has become a major research focus in recent time due to concerns over national security as well as their role as environment pollutants. NO2‐containing electron‐deficient aromatic compounds, such as picric acid (PA), trinitrotoluene (TNT), and dinitrotoluene (DNT), are the common constituents of many commercially available chemical explosives. In this article, we have summarized our recent developments on the rational design of electron‐rich self‐assembled discrete molecular sensors and their efficacy in sensing nitroaromatics both in solution as well as in vapor phase. Several π‐electron‐rich fluorescent metallacycles (squares, rectangles, and tweezers/pincers) and metallacages (trigonal and tetragonal prisms) have been synthesized by means of metal–ligand coordination‐bonding interactions, with enough internal space to accommodate electron‐deficient nitroaromatics at the molecular level by multiple supramolecular interactions. Such interactions subsequently result in the detectable fluorescence quenching of sensors even in the presence of trace quantities of nitroaromatics. The fascinating sensing characteristics of molecular architectures discussed in this article may enable future development of improved sensors for nitroaromatic explosives.  相似文献   
10.
Mesoporous wall‐structured TiO2 on reduced graphene oxide (RGO) nanosheets were successfully fabricated through a simple hydrothermal process without any surfactants and annealed at 400 °C for 2 h under argon. The obtained mesoporous structured TiO2–RGO composites had a high surface area (99 0307 m2 g?1) and exhibited excellent electrochemical cycling (a reversible capacity of 260 mAh g?1 at 1.2 C and 180 mAh g?1 at 5 C after 400 cycles), demonstrating it to be a promising method for the development of high‐performance Li‐ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号