首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   976篇
  免费   204篇
  国内免费   322篇
化学   1357篇
晶体学   21篇
力学   20篇
综合类   8篇
物理学   96篇
  2023年   17篇
  2022年   17篇
  2021年   26篇
  2020年   58篇
  2019年   49篇
  2018年   37篇
  2017年   31篇
  2016年   70篇
  2015年   65篇
  2014年   48篇
  2013年   97篇
  2012年   71篇
  2011年   51篇
  2010年   42篇
  2009年   53篇
  2008年   55篇
  2007年   63篇
  2006年   58篇
  2005年   81篇
  2004年   76篇
  2003年   73篇
  2002年   42篇
  2001年   32篇
  2000年   35篇
  1999年   34篇
  1998年   23篇
  1997年   24篇
  1996年   30篇
  1995年   38篇
  1994年   18篇
  1993年   17篇
  1992年   25篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   2篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
排序方式: 共有1502条查询结果,搜索用时 15 毫秒
1.
The macrocyclic core of the cytotoxic marine natural product callyspongiolide ( 1 ) was forged by ring-closing alkyne metathesis (RCAM) of an ynoate precursor using a molybdenum alkylidyne complex endowed with triarylsilanolate ligands as the catalyst. This result is remarkable in view of the failed attempts documented in the literature at converting electron deficient alkynes with the aid of more classical catalysts. The subsequent Z-selective semi-reduction of the resulting cycloalkyne by hydrogenation over nickel boride required careful optimization in order to minimize overreduction and competing dehalogenation of the compound's alkenyl iodide terminus as needed for final attachment of the side chain of 1 by Sonogashira coupling. The required cyclization precursor itself was prepared via Kocienski olefination.  相似文献   
2.
Molybdenum carbide (Mo2C) is a promising noble-metal-free electrocatalyst for the hydrogen evolution reaction (HER), due to its structural and electronic merits, such as high conductivity, metallic band states and wide pH applicability. Here, a simple CVD process was developed for synthesis of a Mo2C on carbon cloth (Mo2C@CC) electrode with carbon cloth as carbon source and MoO3 as the Mo precursor. XRD, Raman, XPS and SEM results of Mo2C@CC with different amounts of MoO3 and growth temperatures suggested a two-step synthetic mechanism, and porous Mo2C nanostructures were obtained on carbon cloth with 50 mg MoO3 at 850 °C (Mo2C-850(50)). With the merits of unique porous nanostructures, a low overpotential of 72 mV at current density of 10 mA cm−2 and a small Tafel slope of 52.8 mV dec−1 was achieved for Mo2C-850(50) in 1.0 m KOH. The dual role of carbon cloth as electrode and carbon source resulted into intimate adhesion of Mo2C on carbon cloth, offering fast electron transfer at the interface. Cyclic voltammetry measurements for 5000 cycles revealed that Mo2C@CC had excellent electrochemical stability. This work provides a novel strategy for synthesizing Mo2C and other efficient carbide electrocatalysts for HER and other applications, such as supercapacitors and lithium-ion batteries.  相似文献   
3.
Yutuo Guo 《中国物理 B》2022,31(7):76105-076105
Direct visualization of the structural defects in two-dimensional (2D) semiconductors at a large scale plays a significant role in understanding their electrical/optical/magnetic properties, but is challenging. Although traditional atomic resolution imaging techniques, such as transmission electron microscopy and scanning tunneling microscopy, can directly image the structural defects, they provide only local-scale information and require complex setups. Here, we develop a simple, non-invasive wet etching method to directly visualize the structural defects in 2D semiconductors at a large scale, including both point defects and grain boundaries. Utilizing this method, we extract successfully the defects density in several different types of monolayer molybdenum disulfide samples, providing key insights into the device functions. Furthermore, the etching method we developed is anisotropic and tunable, opening up opportunities to obtain exotic edge states on demand.  相似文献   
4.
A novel N‐doped MoO 3 @SiC hollow nanosphere has been synthesized through two steps. Due to the first step, N‐doped MoO2@C nanosphere was synthesized using the hydrothermal method and in the second step, Si‐C bonds were formed through the low‐temperature magnesiothermic method and MoO 3 @SiC hollow nanosphere was produced. The prepared nanostructures were identified by various techniques such as IR, XRD, XPS, BET/BJH, SEM/EDS, and Raman spectroscopy. Results show that converting of C to SiC increase the surface area from 17 to 241 m2/g with remarkably decrease in pore diameter. Also, molybdenum is present in the form of MoO2 in carbon catalyst while during magnesiothermic process, it transfers to MoO3 form in the SiC catalyst. The synthesized products were employed as catalysts in oxidative desulfurization of model fuel. The results displayed that MoO 3 @SiC hollow nanostructure shows a superior catalytic activity (99.9%, 40 min) compared to C support (56%, 60 min). Furthermore, the recycling of MoO2@C catalyst shows a dramatic decrease even after the first run, while, SiC support exhibit higher stability during the stronger interaction between molybdenum catalyst and SiC support.  相似文献   
5.
Molybdenum disulfide (MoS2) is an intensively studied anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity, but it is still confronted by severe challenges of unsatisfactory rate capability and cycle life. Herein, few-layer MoS2 nanosheets, vertically grown on hierarchical carbon nanocages (hCNC) by a facile hydrothermal method, introduce pseudocapacitive lithium storage owing to the highly exposed MoS2 basal planes, enhanced conductivity, and facilitated electrolyte access arising from good hybridization with hCNC. Thus, the optimized MoS2/hCNC exhibits reversible capacities of 1670 mAh g−1 at 0.1 A g−1 after 50 cycles, 621 mAh g−1 at 5.0 A g−1 after 500 cycles, and 196 mAh g−1 at 50 A g−1 after 2500 cycles, which are among the best for MoS2-based anode materials. The specific power and specific energy, which can reach 16.1 kW and 252.8 Wh after 3000 cycles, respectively, indicate great potential in high-power and long-life LIBs. These findings suggest a promising strategy for exploring advanced anode materials with high reversible capacity, high-rate capability, and long-term recyclability.  相似文献   
6.
Molybdenum(0) dinitrogen complexes, supported by the mixed NHC/phosphine pincer ligand PCP, exhibit an extreme activation of the N2 ligand due to a very π‐electron‐rich metal center. The low thermal stability of these compounds can be increased using phosphites instead of phosphines as coligands. Through an amalgam reduction of [MoCl3(PCP)] in the presence of trimethyl phosphite and N2 the highly activated and room‐temperature stable dinitrogen complex [Mo(N2)(PCP)(P(OMe)3)2] is obtained. As a second product, the first transition metal complex containing the meta‐phosphite ligand P(O)(OMe) originates from this reaction.  相似文献   
7.
The mechanism of the molybdenum‐catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an MoVI oxo complex, oxidative cleavage of the diol resulting in an MoIV complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum‐catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum‐catalyzed biomass transformations.  相似文献   
8.
The molybdenum‐catalyzed asymmetric ring‐closing metathesis of the various Cs‐symmetric (π‐arene)chromium substrates provides the corresponding bridged planar‐chiral (π‐arene)chromium complexes in excellent yields with up to >99 % ee. With a bulky and unsymmetrical substituent, such as N‐indolyl or 1‐naphthyl, at the 2‐positions of the η6‐1,3‐diisopropenylbenzene ligands, both biaryl‐based axial chirality and π‐arene‐based planar chirality are simultaneously induced in the products. The axial chirality is retained even after the removal of the dicarbonylchromium fragment, and the chiral biaryl/heterobiaryl compounds are obtained with complete retention of the enantiopurity.  相似文献   
9.
Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis–conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling.  相似文献   
10.
Polyethylene terephthalate (PET) is selectively depolymerized by a carbon-supported single-site molybdenum-dioxo catalyst to terephthalic acid (PTA) and ethylene. The solventless reactions are most efficient under 1 atmosphere of H2. The catalyst exhibits high stability and can be recycled multiple times without loss of activity. Waste beverage bottle PET or a PET + polypropylene (PP) mixture (simulating the bottle + cap) proceeds at 260 °C with complete PET deconstruction and quantitative PTA isolation. Mechanistic studies with a model diester, 1,2-ethanediol dibenzoate, suggest the reaction proceeds by initial retro-hydroalkoxylation/β-C−O scission and subsequent hydrogenolysis of the vinyl benzoate intermediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号