首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   3篇
化学   11篇
  2023年   1篇
  2015年   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  2002年   4篇
  1996年   1篇
  1993年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
非螯合型手性双膦/钌催化的不对称氢化反应   总被引:1,自引:0,他引:1  
RuCl3和手性双膦(2S,5S)-2,5-双-(二苯膦)-1,4∶3,6-双脱水-2,5-双去氧-L-艾杜醇(BDPI)催化的不对称氢化反应进行了研究,反应的转化率为100%,光学收率受[双膦]/[RuCl3]比值的影响较大.在α-乙酰胺基肉桂酸的催化氢化反应中,[双膦]/[RuCl3]=2.0时e.e.值最大,为68%;对衣糠酸的催化氢化,[双膦]/[RuCl3]=3时e.e.值最大,为92%.  相似文献   
2.
RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   
3.
This review reports the contribution of the catalyst precursor RuCl(COD)C5Me5, and of the Rennes team, for the selective transformation of alkynes to generate high value chemicals with atom economy reactions. Ruthenium activation processes are discussed. Are successively presented (i) the cross-oxidative coupling of alkyne and allyl alcohol to generate γ,δ-unsaturated aldehydes, (ii) the head-to-head dimerisation of alkynes in the presence of carboxylic acids, via a mixed Fischer-Schrock type biscarbene-ruthenium complex, to give functional dienes, and that of propargyl alcohols, via cyclobutadienyl-ruthenium intermediate, to produce cyclobutene derivatives, (iii) the addition of diazoalkanes to alkynes leading to functional dienes via double carbene addition and (iv) the reaction of diazoalkanes to enynes leading to new bicyclo[3.1.0]hexane compounds. Most of the above catalytic reactions involve carbene-ruthenium catalytic species of type Cp*(Cl)Ru(biscarbene) or Cp*(Cl)RuCHR.  相似文献   
4.
X‐ray photoelectron spectroscopy (XPS) utilising monochromatic Al Kα radiation has been employed to study metallic ruthenium and the catalytically and technologically important ruthenium compounds RuO2, RuCl3, Ru(NO)(NO3)3 and Ru(AcAc)3. The results improve on the accuracy of already published Ru(3d) binding energies, expand known Ru(3p) binding energies and also report spin‐orbit splitting for the core levels. For RuO2, the difference between anhydrous and hydrated samples is explored, and the effect on curve fitting such spectra is discussed. Analysis of RuCl3 has allowed, for the first time, the positive identification of Ru(OH)3 by XPS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
陶明  熊伟  陈华  李贤均 《分子催化》2007,21(3):260-263
设计合成了一种新型的钌-双膦-手性二胺三元配合物RuC l2(BDPX)[(S,S)-DPEN][BDPX=邻-二(二苯基膦)甲苯,DPEN=1,2-二苯基乙二胺].利用此配合物作催化剂催化了苯乙酮和几种取代苯乙酮的不对称氢化反应;考察了多种因素对苯乙酮不对称氢化反应的转化率和ee值的影响.结果表明,此配合物对苯乙酮进行不对称氢化反应具有良好的催化性能和较高的对映选择性,在优化的条件下,当苯乙酮、配合物的摩尔比为20000?1时,其不对称氢化反应的转化率可达到100%,其ee值可达到59.0%;对取代苯乙酮的不对称氢化反应也具有一定的催化活性和中等的对映选择性.  相似文献   
6.
采用共沉淀法制备了手性胺(L-脯氨酸、D-脯氨酸、(1R,2R)-1,2-二苯基乙二胺二磺酸钠((1R,2R)-DPENDS)、(1S,2S)-1,2-二苯基乙二胺二磺酸钠((1S,2S)-DPENDS))修饰的羟基磷灰石(HAP).并采用傅里叶变换红外(FT-IR)光谱,扫描电子显微镜(SEM),X射线衍射(XRD)和比表面积测定(BET)等仪器分析手段对其进行表征.以手性胺修饰的羟基磷灰石做载体负载RuCl2(TPP)3催化苯乙酮不对称加氢反应,详细考察温度、压力、碱的浓度、手性胺负载量等条件对催化反应的影响.在氢气压力为5.0 MPa、30℃条件下反应4 h,苯乙酮的不对称加氢反应,可获得99.9%转化率和77.8%对映选择性,其结果优于对应的均相催化反应.实验结果证明,催化反应在载体表面完成,催化剂通过简单离心分离可循环使用.  相似文献   
7.
CO在担载Ru催化剂上的吸脱附作用及其表面加氢反应   总被引:2,自引:0,他引:2  
研究了担载于Al_2O_3和ZrO_2上的以Ru_3(CO)_(12)为前体的[Ru]和以RuCl_3为前体的Ru催化剂的TPR特性、CO吸脱附行为及其表面加H_2反应。担载于Al_2O_3上的[Ru]和Ru催化剂上部分物相较担载于ZrO_2上者难于还原。CO在氧化[Ru]催化剂上主要以Ru(CO)yO_2表面络合物形式存在,在还原[Ru]和Ru、以及氧化Ru催化剂上CO以吸附物种形式存在。在Ru离子上的CO比在Ru原子上者难于脱附。以ZrO_2为载体的[Ru]和Ru催化剂上的CO加H_2生成CH_4的性能显著优于以Al_2O_3为载体者,担载[Ru]催化剂上的CO加H_2性能略优于担载Ru催化剂。  相似文献   
8.
RuCl3/PPh3催化顺酐加氢为琥珀酸酐的反应机理研究   总被引:2,自引:0,他引:2  
刘蒲  朱卫卫  殷元骐 《分子催化》2002,16(4):253-257
利用原位^31P NMR,IR技术跟踪了RuCl3/PPh3催化顺酐加氢过程,并考察了酸碱的添加对反应的影响。根据实验结果,提出了在RuCl3/PPh3催化剂体系作用下,顺酐均相加氢生成琥珀酐的反应历程:RuCl3/PPh3在反应体系中生成活性物种RuHCl(PPh3),顺酐以C=C双键与Ru-H活性物种配位生成配合物,此配合物分子内氢转移,形成金属烷基化物,该化合物再与氢进行氧化加成,还原脱出产物琥珀酸酐和Ru-H活性物种,完成整个催化循环。  相似文献   
9.
以D-和L-酒石酸为原料,合成出高光学纯度的缩丙酮-(R)-和(S)-甘油酸(1a,1b),总收率分别为32.8和34.1%,制备的关键步骤为三氯化钌与次氯酸钠对邻二醇结构中C-C键的选择性氧化断裂  相似文献   
10.
RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号