首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   14篇
  国内免费   5篇
化学   521篇
物理学   31篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2016年   4篇
  2015年   12篇
  2014年   12篇
  2013年   31篇
  2012年   37篇
  2011年   42篇
  2010年   27篇
  2009年   39篇
  2008年   24篇
  2007年   46篇
  2006年   34篇
  2005年   47篇
  2004年   49篇
  2003年   30篇
  2002年   17篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1991年   7篇
  1990年   14篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有552条查询结果,搜索用时 46 毫秒
1.
Magnetic graphitic carbon nitride nanocomposites were successfully prepared in situ and used to develop a highly sensitive magnetic solid‐phase extraction method for the preconcentration of phthalate esters such as di‐n‐butyl phthalate, butyl phthalate, dihexyl phthalate, and di‐(2‐ethyl hexyl) phthalate from water. The adsorption and desorption of the phthalate esters on magnetic graphitic carbon nitride nanocomposites were investigated and the parameters affecting the partition of the phthalate esters, such as adsorption, desorption, recovery, were assessed. Under the optimized conditions, the proposed method showed excellent sensitivity with limits of detection (S/N = 3) in the range of 0.05–0.1 μg/L and precision in the range of 1.1–2.6% (n = 5). This method was successfully applied to the analysis of real water samples, and good spiked recoveries over the range of 79.4–99.4% were obtained. This research provides a possibility to apply this nanocomposite for adsorption, preconcentration, or even removal of various carbon‐based ring or hydrophobic pollutants.  相似文献   
2.
First, the extraction and preconcentration of ultratrace amounts of lead(II) ions was performed using microliter volumes of a task‐specific ionic liquid. The remarkable properties of ionic liquids were added to the advantages of microextraction procedure. The ionic liquid used was trioctylmethylammonium thiosalicylate, which formed a lead thiolate complex due to the chelating effect of the ortho‐positioned carboxylate relative to thiol functionality. So, trioctylmethylammonium thiosalicylate played the roles of both chelating agent and extraction solvent simultaneously. Hence, there is no need to use a ligand. The main parameters affecting the efficiency of the method were investigated and optimized. Under optimized conditions, this approach showed a linear range of 2.0–24.0 ng/mL with a detection limit of 0.0010 ng/mL. The proposed method was applied to the extraction and preconcentration of lead from red lipstick and pine leaves samples prior to electrothermal atomic absorption spectroscopic determination.  相似文献   
3.
Early detection of pathogenic microorganisms is pivotal to diagnosis and prevention of health and safety crises. Standard methods for pathogen detection often rely on lengthy culturing procedures, confirmed by biochemical assays, leading to >24 h for a diagnosis. The main challenge for pathogen detection is their low concentration within complex matrices. Detection of blood-borne pathogens via techniques such as PCR requires an initial positive blood culture and removal of inhibitory blood components, reducing its potential as a diagnostic tool. Among different label-free microfluidic techniques, inertial focusing on microscale channels holds great promise for automation, parallelization, and passive continuous separation of particles and cells. This work presents inertial microfluidic manipulation of small particles and cells (1–10 μm) in curved serpentine glass channels etched at different depths (deep and shallow designs) that can be exploited for (1) bacteria preconcentration from biological samples and (2) bacteria-blood cell separation. In our shallow device, the ability to focus Escherichia coli into the channel side streams with high recovery (89% at 2.2× preconcentration factor) could be applied for bacteria preconcentration in urine for diagnosis of urinary tract infections. Relying on differential equilibrium positions of red blood cells and E. coli inside the deep device, 97% red blood cells were depleted from 1:50 diluted blood with 54% E. coli recovered at a throughput of 0.7 mL/min. Parallelization of such devices could process relevant volumes of 7 mL whole blood in 10 min, allowing faster sample preparation for downstream molecular diagnostics of bacteria present in bloodstream.  相似文献   
4.
5.
The content of copper in natural water is very low, and direct determination is difficult. Therefore, it is very meaningful for the combination of efficient separation-enrichment technology and highly sensitive detection. Based on the high adsorption capacity of Cu(II) onto nano-sized ZnO, a novel method by using nano-sized ZnO as adsorbent and graphite furnace atomic absorption spectrometry as determination means was in this work. The adsorption behaviors of Cu(II) on nano-sized ZnO was studied. Effects of acidity, adsorption equilibrium time, adsorbent dosage and coexisting ions on adsorption rates were investigated. The results showed that the adsorption efficiency was above 95% in a pH range from 3.0 to 7.0. Compared with other adsorbents for trace element enrichment such as activated carbon, nano-sized TiO2 powder, the most prominent advantage is nanosized ZnO precipitate with the concentrated element can directly dissolved in HCl solution without any filtration and desorption process can directly analyzed by graphite furnace atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry. Compared with colloid nano materials, nano-sized ZnO is the true solution after dissolving have small matrix effect and viscosity more suitable for graphite furnace atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry detection. The proposed method possesses low detection limit (0.13 mu g.L-1) and good precision (RSD=2.2%). The recoveries for the analysis of environmental samples were in a rang of 91.6%-92.6% and the analysis results of certified materials were compellent by using the proposed method.  相似文献   
6.
A new method using a column packed with graphene as adsorbent was developed for the preconcentration of trace amounts of cobalt (Co) and nickel (Ni) prior to their determinations by flame atomic absorption spectrometry. Several factors influencing the extraction efficiency of Co and Ni and their subsequent determinations, such as pH, amounts of the chelating agent, flow rates of sample and eluent solution, eluent type and its volume, breakthrough volume, and adsorption capacity were established. Under the optimum conditions, the calibration graphs were linear in the range of 4.0‐200.0 μg L?1 and 5.0‐200.0 μg L?1 with detection limits of 0.36 μg L?1 and 0.51 μg L?1 for Co and Ni, respectively. Good relative standard deviations for ten determinations of 100.0 μg L?1 of Co and Ni were 3.2 and 3.6%, respectively. The results for determination of Co and Ni in tap water, river water, sea water, vegetable and spiked samples have demonstrated the accuracy and applicability of the proposed method. To validate the proposed method, three certified reference materials of environment water (GSBZ 50030‐94 and GSB 07‐1186‐2000) and tomato leaf (GSBZ 51001‐94) were analyzed, and the determined values were in good agreement with the certified values.  相似文献   
7.
Centrifugally-driven microfluidic compact discs (μ-CDs) have attracted significant interest within the analytical science community in the past decade, with the primary focus on the potential of such platforms for performing parallel and/or multiplex biological assays and further application in biomedical diagnostics. More recently, μ-CD-based devices were also applied to environmental analysis as platforms for multi-sample extraction and transportation, prior to off-disc analysis in the laboratory. This review critically summarizes recent developments in μ-CD platforms for sample extraction, preconcentration, fractionation and purification in bioanalytical and environmental applications. We also summarize the common methods employed in the fabrication of μ-CD platforms. Further, we discuss preparation of stationary phases in microfluidic channels embedded in μ-CDs, as applications of μ-CDs in sample extraction are generally based on enclosed series of extraction phases and microcolumns.  相似文献   
8.
A liquid‐phase microextraction technique was developed using dispersive liquid‐liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of cobalt in water samples. Microextraction efficiency factors, such as the type and volume of extraction and dispersive solvents, pH, extraction time, the chelating agent amount, and ionic strength were investigated and optimized. Under optimum conditions, an enrichment factor of 160 was obtained from 10.0 mL of water sample. The calibration graph was linearin the range of 1.15‐110 μg L?1 with a detection limit of 0.35 μg L?1. The relative standard deviation for ten replicate measurements of 10 and 100 μg L?1 of cobalt were 3.26% and 2.57%, respectively. The proposed method was assessed through the analysis of certified reference water or recovery experiments.  相似文献   
9.
A simple, rapid and inexpensive solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper were developed. 3-amino-7-dimethylamino-2-methylphenazine (Neutral red, NR) was used as the complexing agent. Several factors affecting the microextraction efficiency, such as, pH, NR and sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate, and temperature were investigated and optimized. Under optimized experimental conditions an enrichment factor of 541 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 0.5–20.0 ng mL− 1 and the limit of detection (3 s) was 0.18 ng mL− 1, the limit of quantification (10 s) was 0.58 ng mL− 1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL− 1 copper was 2.7%. The developed method was successfully applied to the extraction and determination of copper in different certified reference materials (Estuarine water, Slew 3 and fortified water, TM 23.2) and real water samples and satisfactory results were obtained.  相似文献   
10.
采用强碱性阴离子交换树脂富集饮料中的合成食用色素日落黄,用近红外漫反射光谱技术直接测定富集有色素的树脂.将34个模拟样品建模,日落黄浓度范围为0.05~1.2g/L.以柠檬黄和亮丽春红5R为干扰,经偏最小二乘回归建模,得到决定系数为0.9883,标准偏差为0.0187的稳健模型.定量预测3种不同市售饮料中的日落黄,回收...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号