首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   8篇
  国内免费   8篇
化学   51篇
物理学   10篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   7篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
2.
High nuclearity platinum carbonyl cluster anions (Chini's clusters) have been used as precursors to prepare a platinum nanocatalyst. The ionic polyelectrolyte poly(diallyldimethylammonium chloride) has been used as the support material for anchoring [Pt30(CO)60]2− via ion-pairing and subsequent stabilization of the nanoparticles. The polymer-supported material has been studied by spectroscopy (NIR, 13C NMR, and IR) and TEM before and after its use as a water soluble hydrogenation catalyst. The nanocatalyst is found to be effective for the chemoselective hydrogenation of olefinic, aldehydic and ketonic double bonds. For most of the substrates isolation of the product and reuse of the catalyst are extremely easy due to the automatic phase separation of the products from the catalyst. The spectral features of the fresh catalyst show retention of the carbonyl ligands and molecular identity of the parent cluster, but after use the carbonyl ligands appear to be lost. TEM of the supported material before and after use as a catalyst shows the presence of platinum nanoparticles with majority (≥70%) of the particles in the range of 2–6 nm. Smaller particles are dominant in the used catalyst and this observation is rationalized on the basis of the known reactivity of Chini's clusters with dihydrogen.  相似文献   
3.
An efficient and eco-friendly method is reported for the synthesis of 2-substituted-2,3-dihydroquinazolin -4(1 H)-ones from direct cyclocondensation of anthranilamide with aldehydes and ketones using N-propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles(MNPs-PSA) as a recoverable and recyclable nanocatalyst in good to excellent yields in water at 70℃.The catalyst was readily separated using an external magnet and reusable without significant loss of their catalytic efficiency.  相似文献   
4.
The aim of this study was to investigate the regularities of molecular hydrogen formation from water dispersing Al2O3 nanoparticles irradiated with gamma ray. It was established that formed molecular hydrogen’s yield changed depending on the size of the catalyst, so that yield of molecular hydrogen formed on the surface with small size is 1.4–1.6 times greater than the one with big size. Equal distribution of nanocatalyst in water medium and much more adsorption of water molecule on the catalyst surface result in more efficient radiolysis process.  相似文献   
5.
Pure and Sm-doped ZnO nanoparticles were synthesized applying a simple sonochemical method. The nanocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques which confirmed the successful synthesis of the doped sonocatalyst. The sonocatalytic degradation of Acid Blue 92 (AB92), a model azo dye, was more than that with sonolysis alone. The 6% Sm-doped ZnO nanoparticles had a band gap of 2.8 eV and demonstrated the highest activity. The degradation efficiency (DE%) of sonolysis and sonocatalysis with undoped ZnO and 6% Sm-doped ZnO was 45.73%, 63.9%, and 90.10%, after 150 min of treatment, respectively. Sonocatalytic degradation of AB92 is enhanced with increasing the dopant amount and catalyst dosage and with decreasing the initial AB29 concentration. DE% declines with the addition of radical scavengers such as chloride, carbonate, sulfate, and tert-butanol. However, the addition of enhancers including potassium periodates, peroxydisulfate, and hydrogen peroxide improves DE% by producing more free radicals. The results show adequate reusability of the doped sonocatalyst. Degradation intermediates were recognized by gas chromatography–mass spectrometry (GC–MS). Using nonlinear regression analysis, an empirical kinetic model was developed to estimate the pseudo-first-order constants (kapp) as a function of the main operational parameters, including the initial dye concentration, sonocatalyst dosage, and ultrasonic power.  相似文献   
6.
Magnesium oxide nanotubes were prepared by electrospinning technique. The nanocatalysts have been characterized by various sophisticated techniques, including XRD, SEM, and TEM. The activities of these NT catalysts are promoting pyrazolyl 1,4-dihydropyridine syntheses have been extensively investigated. Various advantages associated with these protocols simple workup procedure, short reaction times, high yields and reusability of the catalyst.  相似文献   
7.
A cellulose based magnetic nanocomposite possessing NHC-Cu Complex has been synthesized and characterized. It was then applied as a highly active catalyst in one-pot three-component reaction of sulfonyl azides, secondary amines and triethylamine to afford N-sulfonylformamidines. Copper catalyzed oxidative transformation of C-N bond of triethylamine is a key step to give desired products. In contrast with the good reactivity of the conventional secondary amines, aromatic amines and NH containing heteroaromatics had no activity in these reactions. Moreover, the used nanocatalyst which could be recovered by external magnet, showed reasonable catalytic activity for several times.  相似文献   
8.
Among the various green keys, catalysis, especially using heterogeneous catalysts, has been powerfully applied to achieve greener chemical processes. Here are presented nanoporous materials which have mesoporosity with the functional groups on the inner pore walls. The materials were synthesized via a rather greener process, such as microwave synthesis, and over these nanocatalysts some of the green chemical reactions were carried out with high activities and selectivities. Cobalt species has been successfully functionalized and stabilized as a Co(III) complex onto SBA-15 support and proven to be an active catalyst in alkylaromatic oxidation with molecular oxygen, styrene epoxidation with tert-butyl hydroperoxide (TBHP), and allylic oxidation of cycloolefins with H2O2. Short-channeled amino-functionalized SBA-15 catalyst with hexagonal plate morphology was synthesized directly by using microwave synthesis from the co-condensation of aminopropyl triethoxysilane (APTES) and sodium metasilicate under a strong acidic condition. The catalyst showed high catalytic activity in liquid-phase Knoevenagel condensation reactions, due to easy diffusion and mass transfer of substrates into the short mesopore channel. The HO3S–SBA-15 was prepared by grafting of mercaptopropyl trimethoxysilane onto the calcined mesoporous silica surface and subsequently oxidized with H2O2. The resulting catalyst was applied as a Bronsted solid-acid catalyst for the esterification of oleic acid with methanol.  相似文献   
9.
采用初湿浸渍和溶胶凝胶法分别制备了Li/MgO催化剂和Li/MgO纳米催化剂. 比较两种Li/MgO催化剂对于甲烷氧化偶联反应的催化性能. 采用X射线衍射、BET吸附和透射电镜进行了表征.在973-1073 K和总压力为101 kPa下对催化剂进行了测试. 实验结果表明,Li/MgO纳米催化剂比普通催化剂对于甲烷氧化偶联反应表现为更高的甲烷转换率,较高选择性和较高的的主要产品(乙烷和乙烯)的产率.  相似文献   
10.
综述了用于燃料电池中氧还原反应(ORR)的石墨烯衍生物负载的各种纳米催化剂的最新进展。介绍了用于表征石墨烯基电催化剂的常规电化学技术以及石墨烯基电催化剂最新的研究进展。负载于还原氧化石墨烯(RGO)上的Pt催化剂的电化学活性和稳定性均得到显著提高。其它贵金属催化剂,如Pd, Au和Ag也表现出较高的催化活性。当以RGO或少层石墨烯为载体时, Pd催化剂的稳定性提高。讨论了氧化石墨烯负载Au或Ag催化剂的合成方法。另外,以N4螯合络合物形式存在的非贵过渡金属可降低氧的电化学性能。 Fe和Co是可替代的廉价ORR催化剂。在大多数情况下,这些催化剂稳定性和耐受性的问题均可得到解决,但其整体性能还很难超越Pt/C催化剂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号