首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   2篇
  国内免费   8篇
化学   98篇
物理学   11篇
  2022年   5篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   11篇
  2015年   7篇
  2014年   5篇
  2013年   9篇
  2012年   10篇
  2011年   6篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2003年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
1.
Recent advance in liquid crystal (LqC) based immunoassays enables label-free detection of antibody, but manual preparation of LqC cells and injection of LqC are required. In this work, we developed a new format of LqC-based immunoassay which is hosted in a microfluidic device. In this format, the orientations of LqC are strongly influenced by four channel walls surrounding the LqC. When the aspect ratio (depth/width) of the channel is smaller than 0.38, LqC orients homeotropically inside the microchannel and appears dark. After antigens bind to immobilized antibodies on the channel walls, a shift of the LqC appearance from dark to bright (due to the disruption of LqC orientation) can be visualized directly. To streamline the immunoassay process, a tubing cartridge loaded with a sample solution, washing buffers and a plug of LqC is connected to the microfluidic device. By using pressure-driven flow, the cartridge allows antigen/antibody binding, washing and optical detection to be accomplished in a sequential order. We demonstrate that this microfluidic immunoassay is able to detect anti-rabbit IgG with a naked-eye detection limit down to 1 μg mL−1. This new format of immunoassay provides a simple and robust approach to perform LqC-based label-free immunodetection in microfluidic devices.  相似文献   
2.
随着核酸自组装领域的飞速发展,除了作为遗传信息的载体外,核酸成为了一种具有高操作自由度和无限可能性的功能材料.基于核酸自组装原理的DNA纳米技术凭借其强大的可编辑性已经广泛应用于生物传感、纳米材料工程、医学诊疗以及分子计算机等领域.纳米孔作为一种新兴的单分子分析技术具有高分辨、高通量、免标记等特点,近年来在基因测序、分子物理化学性质分析等领域展示出了极大的应用潜力.作为一种新型高分辨表征技术,纳米孔已经在DNA纳米技术研究中崭露头角,被用于原位追踪和分析核酸分子的自组装行为.另一方面,DNA纳米技术也为纳米孔传感所面临的技术瓶颈提供了更多样化的解决思路,如借助功能核酸(Aptamer或DNAzyme)和无酶扩增核酸分子线路实现纳米孔对待测物的特异性增敏检测.本专论旨在通过对近期纳米孔技术与核酸自组装的跨领域研究成果进行系统性回顾,总结并展望纳米孔传感领域内核酸自组装的研究进展,以期为单分子生物分析、信息检索、基因分型和临床诊断等领域提供新思路和新方法.  相似文献   
3.
A label-free DNA-based electrochemical biosensor owning high sensitivity and selectivity has been established for detecting bisphenol A in a wide range of applications. Coupling the high electrochemical performance of graphene oxide-thionine-Au nanomaterial with the specific binding capacity of the aptamers to BPA, the monitoring of trace amount of BPA was realized, the detection limit was 3.3 pg ⋅ mL−1 with strong anti-interference. Besides, using molecular docking, it was found that BPA binds to the bases DC-49, DC-51, DG-52, DG-53 and DA-63 on the aptamer via hydrogen bonding and π-π stacking interactions. Finally, the biosensor had been successfully applied in different real samples.  相似文献   
4.
In this research, poly(diallyldimethylammonium chloride)-capped gold nanoparticles, nickel ferrite particles, and carbon nanotubes were combined to form a PANC metal composite. The prepared metal composite modified onto a glassy carbon electrode was electropolymerized with poly(o-phenylenediamine) and immobilized with horseradish peroxidase, anti-carcinoembryonic antigen antibody, and bovine serum albumin to create the label-free immunosensors for rapid detection of carcinoembryonic antigen (CEA) using chronoamperometry. This developed biocomposite material modified onto a glassy carbon electrode presented an excellent electrocatalytic response to the redox reaction of hydrogen peroxide as a sensing probe, from which the kinetic parameters including of a charge transfer rate constant, a diffusion coefficient value, an electroactive surface area, and a surface concentration were calculated to be 1.85 s−1, 4.28×10−6 cm2 s−1, 0.14 cm2 and 1.87×10−8 mol cm−2, respectively. The developed immunosensors also exhibited a wide linear range of CEA concentration from 0.01 to 25 ng mL−1 with high sensitivity (96.21 μA cm−2 ng−1 mL) and low detection limit (0.72 pg mL−1), excellent selectivity without interfering effects from possible species (amoxicillin, ascorbic acid, aspirin, caffeine, cholesterol, dopamine, glucose, and uric acid), outstanding stability (n=100, %I>50 %), repeatability (%RSD=0.34, n=10), reproducibility (%RSD=4.06, n=10), and rapid analysis (25 s each operation time). This proposed method was successfully applied for CEA detection in whole blood samples with satisfactory results, suggesting that this developed sensing platform may be considered to be exploited for fabrication of other label-free electrochemical immunosensors for the real sample analysis.  相似文献   
5.
Circulating tumor cells (CTCs) have been proven to have significant prognostic, diagnostic, and clinical values in early-stage cancer detection and treatment. The efficient separation of CTCs from peripheral blood can ensure intact and viable CTCs and can, thus, give proper genetic characterization and drug innovation. In this study, continuous and high-throughput separation of MDA-231 CTCs from overlapping sized white blood cells (WBCs) is achieved by modifying inertial cell focusing with dielectrophoresis (DEP) in a single-stage microfluidic platform by numeric simulation. The DEP is enabled by embedding interdigitated electrodes with alternating field control on a serpentine microchannel to avoid creating two-stage separation. Rather than using the electrokinetic migration of cells which slows down the throughput, the system leverages the inertial microfluidic flow to achieve high-speed continuous separation. The cell migration and cell positioning characteristics are quantified through coupled physics analyses to evaluate the effects of the applied voltages and Reynolds numbers (Re) on the separation performance. The results indicate that the introduction of DEP successfully migrates WBCs away from CTCs and that separation of MDA-231 CTCs from similar sized WBCs at a high Re of 100 can be achieved with a low voltage of magnitude 4 ×106 V/m. Additionally, the viability of MDA-231 CTCs is expected to be sustained after separation due to the short-term DEP exposure. The developed technique could be exploited to design active microchips for high-throughput separation of mixed cell beads despite their significant size overlap, using DEP-modified inertial focusing controlled simply by adjusting the applied external field.  相似文献   
6.
三聚氰胺能与铜离子(Cu2+)形成配合物,对荧光铜纳米簇的合成有明显抑制作用,且其抑制程度与三聚氰胺浓度在一定范围内呈线性关系.基于此构建了一种简单、快速检测三聚氰胺的方法.以聚T单链DNA为模板合成的铜纳米簇作为荧光探针,当三聚氰胺存在时,Cu2+与三聚氰胺生成配合物,阻碍铜纳米簇的合成,导致荧光强度降低.在优化的实验条件下,三聚氰胺浓度在5~120 μmol/L范围内呈良好的线性关系,检出限为1.5 μmol/L,牛奶样品中三聚氰胺加标回收率为96.3%~104.4%.与传统纳米金/银、量子点等方法相比,本方法具有简单、快速、灵敏等优点.  相似文献   
7.
《Electroanalysis》2017,29(2):409-414
Electrochemistry offers sensitivity, selectivity and low cost for fabrication of sensors capable of detection of selected DNA targets or mutated genes associated with human disease. In this work, we have developed a novel label‐free, indicator‐free strategy of electrochemical DNA sensor based on Fe3O4 nanoparticles/reduced graphene oxide (Fe3O4/r‐GO) nanocomposite modified electrode. By using Fe3O4/r‐GO nanocomposite as a substrate to immobilize probe DNA and subsequent hybridization with target sequence to form dsDNA, a great signal amplification was achieved through measuring changes in DPV peak current of underlying Fe(II)/Fe(III) redox system. With the remarkable attomolar sensitivity and high specificity and at the same time, great simplicity, the proposed strategy may find great applications in different DNA assay fields.  相似文献   
8.
Within this work we present a ‘proof of principle’ study for the use of scanning electrochemical microscopy (SECM) to detect and image biomolecular interactions in a label-free assay as a potential alternative to current fluorescence techniques. Screen-printed carbon electrodes were used as the substrate for the deposition of a dotted array, where the dots consist of biotinylated polyethyleneimine. These were then further derivatised, first with neutravidin and then with a biotinylated antibody to the protein neuron specific enolase (NSE). SECM using a ferrocene carboxylic acid mediator showed clear differences between the array and the surrounding unmodified carbon. Imaging of the arrays before and following exposure to various concentrations of the antigen showed clear evidence for specific binding of the NSE antigen to the antibody derivatised dots. Non-specific binding was quantified. Control experiments with other proteins showed only non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen at the surface of the dots. Binding of the antigen was accompanied by a measured increase in current response, which may be explained in terms of protein electrostatic interaction and hydrophobic interactions to the mediator, thereby increasing the localised mediator flux. A calibration curve was obtained between 500 fg mL−1 to 200 pg mL−1 NSE which demonstrated a logarithmic relationship between the current change upon binding and antigen concentration without the need for any labelling of the substrate.  相似文献   
9.
Truong LT  Chikae M  Ukita Y  Takamura Y 《Talanta》2011,85(5):2576-2580
In this work, a sensitive label-free impedimetric hCG-immunosensor was constructed by using a commercial screen-printing carbon ink electrode (namely disposable electrochemical printed chip) as the basis. The carbon ink electrode of DEP chip is modified first by deposition of polypyrrole-pyrole-2-carboxylic acid copolymer and thence hCG antibody immobilization via the COOH groups of pyrrole-2-carboxylic acid, which can serve as a linker for covalent biomolecular immobilization. The experimental results exposed that the designed immunosensor is more sensitive than other previously reported immunosensors, in the case of detection limit and linear range for antigen detection. With optimal fabrication parameters, the detection limit for α-hCG was 2.3 pg/mL in 10 mM phosphate buffer saline (PBS) solution containing 1% bovine serum albumine (BSA). Moreover, the use of inexpensive DEP chip as a basis for these immunosensors will allow for simple instrumentation, disposable and portable at low cost. This work also demonstrates a new approach to develop a sensitive and label-free impedimetric immunosensor based on screen-printed electrode for applications in clinical diagnosis.  相似文献   
10.
The BioCD is a spinning-disc interferometric biosensor on which antibodies are immobilized to capture target antigens from biological samples. In this work, BioCDs measured the interferometric response to prostate-specific antigen (PSA). The ideal detection limit for PSA was determined using a BioCD with 12,500 printed target antibody spots with a corresponding number of reference protein spots. Statistical analysis projects the detection limit of PSA as a function of the number of spots included in the average. When approximately 10,000 spot pairs were averaged, the 3σ detection limit was 60 pg/ml in a 2 mg/ml simple protein background. A standard format for BioCD immunoassays uses 96 wells with 32 target spots paired with reference spots. In serum, the detection limit for this format was 1 ng/ml in 3:1 diluted female human serum using a sandwich assay with a nonfluorescent mass tag.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号