首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Moon HS  Kwon K  Kim SI  Han H  Sohn J  Lee S  Jung HI 《Lab on a chip》2011,11(6):1118-1125
Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 μL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications.  相似文献   

2.
Detection and analysis of circulating tumor cells (CTCs) have emerged as a promising way to diagnose cancer, study its cellular mechanism, and test or develop potential treatments. However, the rarity of CTCs among peripheral blood cells is a big challenge toward CTC detection. In addition, in cases where there is similar size range between certain types of CTCs (e.g. breast cancer cells) and white blood cells (WBCs), high‐resolution techniques are needed. In the present work, we propose a deterministic dielectrophoresis (DEP) method that combines the concept of deterministic lateral displacement (DLD) and insulator‐based dielectrophoresis (iDEP) techniques that rely on physical markers such as size and dielectric properties to differentiate different type of cells. The proposed deterministic DEP technology takes advantage of frequency‐controlled AC electric field for continuous separation of CTCs from peripheral blood cells. Utilizing numerical modeling, different aspects of coupled DLD‐DEP design such as the required applied voltages, velocities, and geometrical parameters of DLD arrays of microposts are investigated. Regarding the inevitable difference and uncertainty ranges for the reported crossover frequencies of cells, a comprehensive analysis is conducted on applied electric field frequency as design's determinant factor. Deterministic DEP design provides continuous sorting of CTCs from WBCs even with similar size and has the future potential for high throughput and efficiency.  相似文献   

3.
Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the intrinsic dielectric properties of the particles, is a promising marker-free, accurate, fast, and low-cost technique that enables the isolation of CTCs from blood cells. This study presents a continuous flow, antibody-free DEP-based microfluidic device to concentrate MCF7 breast cancer cells, a well-established CTC model, in the presence of leukocytes extracted from human blood samples. The enrichment strategy was determined according to the DEP responses of the corresponding cells, obtained in our previously reported DEP spectrum study. It was based on the positive-DEP integrated with hydrodynamic focusing under continuous flow. In the proposed device, the parylene microchannel with two inlets and outlets was built on top of rectangular and equally spaced isolated planar electrodes rotated certain degree relative to the main flow (13°). The recovery of MCF7 cells mixed with leukocytes was 74%–98% at a frequency of 1 MHz and a magnitude of 10–12 Vpp. Overall, the results revealed that the presented system successfully concentrates MCF7 cancer cells from leukocytes, ultimately verifying our DEP spectrum study, in which the enrichment frequency and separation strategy of the microfluidic system were determined.  相似文献   

4.
The inertial microfluidic technique, as a powerful new tool for accurate cell/particle separation based on the hydrodynamic phenomenon, has drawn considerable interest in recent years. Despite numerous microfluidic techniques of particle separation, there are few articles in the literature on separation techniques addressing external outlet geometry to increase the throughput efficiency and purity. In this work, we report on a spiral inertial microfluidic device with high efficiency (>98%). Herein, we demonstrate how changing the outlet geometry can improve the particle separation throughput. We present a complete separation of 4 and 6 μm from 10 μm particles potentially applicable to separate microalgae (Tetraselmis suecica from Phaeodactylum tricornutum). Two spiral microchannels with the same cross section dimension but different outlet geometry were considered and tested to investigate the particle focusing behavior and separation efficiency. As compared with particle focusing observed in channels with a simple outlet, the particle focusing in a modified outlet geometry appears in a more successful focusing manner with complete separation. This simple approach of particle separation makes it attractive for lab-on-a-chip devices for continuous extraction and filtration of a wide range of cell/particle sizes.  相似文献   

5.
The ability to isolate and purify white blood cells (WBCs) from mixed ensembles such as blood would benefit autologous cell-based therapeutics as well as diagnosis of WBC disorders. Current WBCs isolation methods have the limitations of low purity or requiring complex and expensive equipment. In addition, due to the overlap in size distribution between lymphocytes (i.e., a sub-population of WBCs) and red blood cells (RBCs), it is challenging to achieve isolation of entire WBCs populations. In this work, we developed an inertial microfluidics-based cell sorter, which enables size-based, high-throughput isolation, and enrichment of WBCs from RBC-lysed whole blood. Using the developed inertial microfluidic chip, the sorting resolution is sharpened within 2 μm, which achieved separation between 3 and 5 μm diameter particles. Thus, with the present cell sorter, a full population of WBCs can be isolated from RBC-lysed blood samples with recovery ratio of 92%, and merely 5% difference in the composition percentage of the three subpopulations of granulocytes, monocytes, and lymphocytes compared to the original sample. Furthermore, our cell sorter is designed to enable broad application of size-based inertial cell sorting by supplying a series of microchips with different sorting cutoff size. This strategy allows us to further enrich the lymphocytes population by twofold using another microchip with a cutoff size between 10 and 15 μm. With simplicity and efficiency, our cell sorter provides a powerful platform for isolating and sorting of WBCs and also envisions broad potential sorting applications for other cell types.  相似文献   

6.
Bhagat AA  Hou HW  Li LD  Lim CT  Han J 《Lab on a chip》2011,11(11):1870-1878
Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ~10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.  相似文献   

7.
The composition of the ship's ballast water is complex and contains a large number of microalgae cells, bacteria, microplastics, and other microparticles. To increase the accuracy and efficiency of detection of the microalgae cells in ballast water, a new microfluidic chip for continuous separation of microalgae cells based on alternating current dielectrophoresis was proposed. In this microfluidic chip, one piece of 3‐dimensional electrode is embedded on one side and eight discrete electrodes are arranged on the other side of the microchannel. An insulated triangular structure between electrodes is designed for increasing the inhomogeneity of the electric field distribution and enhancing the dielectrophoresis (DEP) force. A sheath flow is designed to focus the microparticles near the electrode, so as to increase the suffered DEP force and improve separation efficiency. To demonstrate the performance of the microfluidic separation chip, we developed two species of microalgae cells (Platymonas and Closterium) and a kind of microplastics to be used as test samples. Analyses of the related parameters and separation experiments by our designed microfluidic chip were then conducted. The results show that the presented method can separate the microalgae cells from the mixture efficiently, and this is the first time to separate two or more species of microalgae cells in a microfluidic chip by using negative and positive DEP force simultaneously, and moreover it has some advantages including simple operation, high efficiency, low cost, and small size and has great potential in on‐site pretreatment of ballast water.  相似文献   

8.
Precise cell detecting and counting is meaningful in circulating tumor cells (CTCs) analysis. In this work, a simple cyclic olefin copolymer (COC) microflow cytometer device was developed for size-resolved CTCs counting. The proposed device is constructed by a counting channel and a pinched injection unit having three channels. Through injection flow rate control, microspheres/cells can be focused into the centerline of the counting channel. Polystyrene microspheres of 3, 9, 15, and 20 µm were used for the microspheres focusing characterization. After coupling to laser-induced fluorescence detection technique, the proposed device was used for polystyrene microspheres counting and sizing. A count accuracy up to 97.6% was obtained for microspheres. Moreover, the proposed microflow cytometer was applied to CTCs detecting and counting. To mimic blood sample containing CTCs and CTCs mixture with different subtypes, an MDA-MB-231 (human breast cell line) spiked red blood cells sample and a mixture of MDA-MB-231 and MCF-7 (human breast cell line) sample were prepared, respectively, and then analyzed by the developed pinched flow-based microfluidic cytometry. The simple fabricated and easy operating COC microflow cytometer exhibits the potential in the point-of-care clinical application.  相似文献   

9.
Han KH  Frazier AB 《Lab on a chip》2008,8(7):1079-1086
This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators.  相似文献   

10.
Malaria is a serious disease caused by Plasmodium parasites that infect red blood cells (RBCs). This paper presents the continuous separation of malaria-infected RBCs (iRBCs) from normal blood cells. The proposed method employed the discrete dielectrophoresis (DEP) in a microfluidic device with interdigitated electrodes. Our aim is to treat a sample having high concentration of cells to realize high throughput and to prevent the clogging of the microchannel with the use of the discrete DEP. The discrete DEP force for deflecting cells in the device was controlled by adjusting the magnitude, frequency, and duty cycle of the applied voltage. The effectiveness of the proposed method was demonstrated by separating the malaria-infected cells in samples having a cell concentration of 106 cells/µl. From experimental results, we determined the enrichment that is needed to enhance the detection in the case of low parasitemia. The enrichment of the infected cells at the device output was 3000 times as high as that of the input containing 1 infected cell to 106 normal cells. Therefore, the proposed method is highly effective and can significantly facilitate the detection of the infected cells for the identification of Malaria patients.  相似文献   

11.
Early detection of pathogenic microorganisms is pivotal to diagnosis and prevention of health and safety crises. Standard methods for pathogen detection often rely on lengthy culturing procedures, confirmed by biochemical assays, leading to >24 h for a diagnosis. The main challenge for pathogen detection is their low concentration within complex matrices. Detection of blood-borne pathogens via techniques such as PCR requires an initial positive blood culture and removal of inhibitory blood components, reducing its potential as a diagnostic tool. Among different label-free microfluidic techniques, inertial focusing on microscale channels holds great promise for automation, parallelization, and passive continuous separation of particles and cells. This work presents inertial microfluidic manipulation of small particles and cells (1–10 μm) in curved serpentine glass channels etched at different depths (deep and shallow designs) that can be exploited for (1) bacteria preconcentration from biological samples and (2) bacteria-blood cell separation. In our shallow device, the ability to focus Escherichia coli into the channel side streams with high recovery (89% at 2.2× preconcentration factor) could be applied for bacteria preconcentration in urine for diagnosis of urinary tract infections. Relying on differential equilibrium positions of red blood cells and E. coli inside the deep device, 97% red blood cells were depleted from 1:50 diluted blood with 54% E. coli recovered at a throughput of 0.7 mL/min. Parallelization of such devices could process relevant volumes of 7 mL whole blood in 10 min, allowing faster sample preparation for downstream molecular diagnostics of bacteria present in bloodstream.  相似文献   

12.
We developed a low-cost multi-core inertial microfluidic centrifuge (IM-centrifuge) to achieve a continuous-flow cell/particle concentration at a throughput of up to 20 mL/min. To lower the cost of our IM-centrifuge, we clamped a disposable multilayer film-based inertial microfluidic (MFIM) chip with two reusable plastic housings. The key MFIM chip was fabricated in low-cost materials by stacking different polymer-film channel layers and double-sided tape. To increase processing throughput, multiplexing spiral inertial microfluidic channels were integrated within an all-in-one MFIM chip, and a novel sample distribution strategy was employed to equally distribute the sample into each channel layer. Then, we characterized the focusing performance in the MFIM chip over a wide flow-rate range. The experimental results showed that our IM-centrifuge was able to focus various-sized particles/cells to achieve volume reduction. The sample distribution strategy also effectively ensured identical focusing and concentration performances in different cores. Finally, our IM-centrifuge was successfully applied to concentrate microalgae cells with irregular shapes and highly polydisperse sizes. Thus, our IM-centrifuge holds the potential to be employed as a low-cost, high-throughput centrifuge for disposable use in low-resource settings.  相似文献   

13.
Dielectrophoresis (DEP) is a selective electrokinetic particle manipulation technology that is applied for almost 100 years and currently finds most applications in biomedical research using microfluidic devices operating at moderate to low throughput. This paper reviews DEP separators capable of high-throughput operation and research addressing separation and analysis of non-biological particle systems. Apart from discussing particle polarization mechanisms, this review summarizes the early applications of DEP for dielectric sorting of minerals and lists contemporary applications in solid/liquid, liquid/liquid, and solid/air separation, for example, DEP filtration or airborne fiber length classification; the review also summarizes developments in DEP fouling suppression, gives a brief overview of electrocoalescence and addresses current problems in high-throughput DEP separation. We aim to provide inspiration for DEP application schemes outside of the biomedical sector, for example, for the recovery of precious metal from scrap or for extraction of metal from low-grade ore.  相似文献   

14.
Effective methods for rapid sorting of cells according to their viability are critical in T cells based therapies to prevent any risk to patients. In this context, we present a novel microfluidic device that continuously separates viable and non-viable T-cells according to their dielectric properties. A dielectrophoresis (DEP) force is generated by an array of castellated microelectrodes embedded into a microfluidic channel with a single inlet and two outlets; cells subjected to positive DEP forces are drawn toward the electrodes array and leave from the top outlet, those subjected to negative DEP forces are repelled away from the electrodes and leave from the bottom outlet. Computational fluid dynamics is used to predict the device separation efficacy, according to the applied alternative current (AC) frequency, at which the cells move from/to a negative/positive DEP region and the ionic strength of the suspension medium. The model is used to support the design of the operational conditions, confirming a separation efficiency, in terms of purity, of 96% under an applied AC frequency of 1.5 × 10Hz and a flow rate of 20 μl/h. This work represents the first example of effective continuous sorting of viable and non-viable human T-cells in a single-inlet microfluidic chip, paving the way for lab-on-a-chip applications at the point of need.  相似文献   

15.
The spatial and temporal control of biological species is essential in complex microfluidic biosystems. In addition, if the biological species is a cell, microfluidic handling must ensure that the cell's metabolic viability is maintained. The use of DEP for cell manipulation in microfluidics has many advantages because it is remote and fast, and the voltages required for cell trapping scale well with miniaturization. In this paper, the conditions for bacterial cell (Escherichia coli) trapping using a quadrupole electrode configuration in a PDMS microfluidic channel were developed both for stagnant and for in‐flow fluidic situations. The effect of the electrical conductivity of the fluid, the applied electric field and frequency, and the fluid‐flow velocity were studied. A dynamic exchange between captured and free‐flowing cells during DEP trapping was demonstrated. The metabolic activity of trapped cells was confirmed by using E. coli cells genetically engineered to express green fluorescent protein under the control of an inducible promoter. Noninduced cells trapped by negative DEP and positive DEP were able to express green fluorescent protein minutes after the inducer was inserted in the microchannel system immediately after DEP trapping. Longer times of trapping prior to exposure to the inducer indicated first a degradation of the cell metabolic activity and finally cell death.  相似文献   

16.
The trapping or immobilization of individual cells at specific locations in microfluidic platforms is essential for single cell studies, especially those requiring cell stimulation and downstream analysis of cellular content. Selectivity for individual cell types is required when mixtures of cells are analyzed in heterogeneous and complex matrices, such as the selection of metastatic cells within blood samples. Here, we demonstrate a microfluidic device based on direct current (DC) insulator-based dielectrophoresis (iDEP) for selective trapping of single MCF-7 breast cancer cells from mixtures with both mammalian peripheral blood mononuclear cells (PBMC) as well MDA-MB-231 as a second breast cancer cell type. The microfluidic device has a teardrop iDEP design optimized for the selective capture of single cells based on their differential DEP behavior under DC conditions. Numerical simulations adapted to experimental device geometries and buffer conditions predicted the trapping condition in which the dielectrophoretic force overcomes electrokinetic forces for MCF-7 cells, whereas PBMCs were not trapped. Experimentally, selective trapping of viable MCF-7 cells in mixtures with PBMCs was demonstrated in good agreement with simulations. A similar approach was also executed to demonstrate the selective trapping of MCF-7 cells in a mixture with MDA-MB-231 cells, indicating the selectivity of the device for weakly invasive and highly invasive breast cancer cells. The DEP studies were complemented with cell viability tests indicating acceptable cell viability over the course of an iDEP trapping experiment.
Figure
?  相似文献   

17.
Dielectrophoresis (DEP) represents a powerful approach to manipulate and study living cells. Hitherto, several approaches have used 2‐D DEP chips. With the aim to increase sample volume, in this study we used a 3‐D carbon‐electrode DEP chip to trap and release bacterial cells. A continuous flow was used to plug an Escherichia coli cell suspension first, to retain cells by positive DEP, and thereafter to recover them by washing with peptone water washing solution. This approach allows one not only to analyze DEP behavior of living cells within the chip, but also to further recover fractions containing DEP‐trapped cells. Bacterial concentration and flow rate appeared as critical parameters influencing the separation capacity of the chip. Evidence is presented demonstrating that the setup developed in this study can be used to separate different types of bacterial cells.  相似文献   

18.
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.  相似文献   

19.
The dielectrophoresis (DEP) phenomenon is used to separate platelets directly from diluted whole blood in microfluidic channels. By exploiting the fact that platelets are the smallest cell type in blood, we utilize the DEP-activated cell sorter (DACS) device to perform size-based fractionation of blood samples and continuously enrich the platelets in a label-free manner. Cytometry analysis revealed that a single pass through the two-stage DACS device yields a high purity of platelets (approximately 95%) at a throughput of approximately 2.2 x 10(4) cells/second/microchannel with minimal platelet activation. This work demonstrates gentle and label-free dielectrophoretic separation of delicate cells from complex samples and such a separation approach may open a path toward continuous screening of blood products by integrated microfluidic devices.  相似文献   

20.
The ability to detect and isolate rare target cells from heterogeneous samples is in high demand in cell biology research, immunology, tissue engineering and medicine. Techniques allowing label-free cell enrichment or detection are especially important to reduce the complexity and costs towards clinical applications. Single-cell deformability has recently been recognized as a unique label-free biomarker for cell phenotype with implications for assessment of cancer invasiveness. Using a unique combination of fluid dynamic effects in a microfluidic system, we demonstrate high-throughput continuous label-free cell classification and enrichment based on cell size and deformability. The system takes advantage of a balance between deformability-induced and inertial lift forces as cells travel in a microchannel flow. Particles and droplets with varied elasticity and viscosity were found to have separate lateral dynamic equilibrium positions due to this balance of forces. We applied this system to successfully classify various cell types using cell size and deformability as distinguishing markers. Furthermore, using differences in dynamic equilibrium positions, we adapted the system to conduct passive, label-free and continuous cell enrichment based on these markers, enabling off-chip sample collection without significant gene expression changes. The presented method has practical potential for high-throughput deformability measurements and cost-effective cell separation to obtain viable target cells of interest in cancer research, immunology, and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号