首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  国内免费   2篇
化学   20篇
物理学   23篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Pressure oxidation leaching behavior of chalcopyrite in sulfuric acid solution from 110 °C to 150 °C were investigated by in-situ electrochemical methods. Leaching experiments under saturated vapor pressure conditions were used to simulate the anoxic environment that may be encountered in industrial applications. Scanning electron microscope and X-ray photoelectron spectroscopy were used to characterize the morphology and the chemical status of chalcopyrite surface. Results show that the copper extraction was increased with the increase of leaching temperature. Under the optimal leaching conditions under saturated vapor pressure, the copper and iron extraction are 8.3% and 29.8%, respectively. When the temperature increased from 110 °C to 150 °C, the self-corrosion potential and electrochemical reaction resistance firstly increased and then decreased. In contrast, the resistance of the passive film was always increased with the increase of temperature. The electrochemical study results indicated that the increase in temperature affected the oxidation of chalcopyrite by altering the kinetics of the cathodic reaction and the anodic passivation. Both the self-corrosion current density (icorr) and rate constant were affected by the reduction of Fe(III). The XPS results show that elemental sulfur and H3O(Fe3(SO4)2(OH)6) were the main leaching solid products. The formation of H3O(Fe3(SO4)2(OH)6) not only caused a decrease in cathodic reaction kinetics, but also increased the resistance of mass transfer process. Due to the faster release of iron, copper-rich sulphides were formed, which mixed with the elemental sulfur and/or H3O(Fe3(SO4)2(OH)6) led to coverage of the chalcopyrite surface.  相似文献   
2.
Sputtering technique has been used for the deposition of AgGaSe2 thin films onto soda-lime glass substrates using sequential layer-by-layer deposition of GaSe and Ag thin films. The analysis of energy dispersive analysis of X-ray (EDXA) indicated a Ga-rich composition for as-grown samples and there was a pronounce effect of post-annealing on chemical composition of AgGaSe2 thin film. X-ray diffraction (XRD) measurements revealed that Ag metallic phase exists in the amorphous AgGaSe2 structure up to annealing temperature 450 °C and then the structure turned to the single phase AgGaSe2 with the preferred orientation along (1 1 2) direction with the annealing temperature at 600 °C. The surface morphology of the samples was analyzed by scanning electron microscopy (SEM) measurements. The structural parameters related to chalcopyrite compounds have been calculated. Optical properties of AgGaSe2 thin films were studied by carrying out transmittance and reflectance measurements in the wavelength range of 325-1100 nm at room temperature. The absorption coefficient and the band gap values for as-grown and annealed samples were evaluated as 1.55 and 1.77 eV, respectively. The crystal-field and spin-orbit splitting levels were resolved. These levels (2.03 and 2.30 eV) were also detected from the photoresponse measurements almost at the same energy values. As a result of the temperature dependent resistivity and mobility measurements in the temperature range of 100-430 K, it was found that the decrease in mobility and the increase in carrier concentration following to the increasing annealing temperature attributed to the structural defects (tetragonal distortion, vacancies and interstitials).  相似文献   
3.
In an earlier study [1], the isothermal kinetics of salt roasting of chalcopyrite under an oxidizing atmosphere using KCl was studied in the temperature range 523–773 K. The salt roasting reaction was found to be chemically controlled at temperatures below 600 K both under static air and oxygen atmosphere. At higher temperatures, the process was not thermally activated because of a change in the chemistry of the process. In the present study, the salt roasting of chalcopyrite using KCl under oxygen and static air atmosphere was studied by non-isothermal thermoanalytical studies up to 723 K. The effect of salt content, heating rate and particle size on the salt roasting behavior was studied using TG/DTA techniques at a programmed linear heating rate. The TG and DTA studies reveal two distinct chemical processes, one operative up to 620 K and the other from 620 to 723 K. The integral method of Coats and Redfern was used for the treatment of non-isothermal kinetic data. The non-isothermal analysis confirmed the chemical control mechanism at temperatures below 620 K. However, the activation energy for the process derived from non-isothermal thermogravimetric analysis is almost twice as that deduced from isothermal measurements. In the temperature range 620–723 K, the kinetic data still obeys the interfacial reaction control model although the activation energy in this temperature range is very low.  相似文献   
4.
实验利用金刚石压腔装置研究了常温和0.1~1 400 MPa范围内黄铜矿A1振动模式的原位拉曼光谱特征。结果显示在实验条件范围内,该拉曼振动峰的强度和形态保持稳定,表明晶格内Cu-S和Fe-S间的相互作用没有发生质变。实验发现黄铜矿该拉曼振动的波数随着压力升高连续向高频方向移动,两者的线性关系为:ν290=0.031 2p+290.60(0.1≤p<58.8 MPa)和ν290=0.005 72p+292.10(58.8≤p<1 400 MPa)dν/dp。常温下58.8 MPa是黄铜矿该拉曼波数随压力变化率的一个突变点,低于和高于该压力时分别为31.2和5.72 cm-1·GPa-1,显著的差异表明黄铜矿的结构可能发生了某种改变。  相似文献   
5.
Thin films of CuInS2 were grown on glass substrate by successive ionic layer adsorption and reaction method with different [Cu]/[In] ratios and annealed at 400 °C for 30 min. The crystal structure and grain sizes of the thin films were characterized by X-ray diffraction method. Atomic force microscopy was used to determine surface morphology of the films. Optical and electrical properties of these films were investigated as a function of [Cu]/[In]ratios. The electrical resistivity of CuInS2 of thin films was determined using a direct current-two probe method in the temperature range of 300—470 K. It is observed that, the electrical resistivity values show a big decreasing with increasing [Cu]/[In] ratio. Hence, the [Cu]/[In] ratio in the solution can drastically affect the structural, electrical, and optical properties of thin films of CuInS2.  相似文献   
6.
Chalcopyrite Cu(In,Ga)Se (CIGS) is a very promising material for thin film photovoltaics and offers a number of interesting advantages compared to the bulk silicon devices. CIGS absorbers today have a typical thickness of about 1–2 μm. However, on the way toward mass production, it will be necessary to reduce the thickness even further. This paper indicates a numerical study to optimization of CIGS based thin film solar cells. An optimum value of the thickness of this structure has been calculated and it is shown that by optimizing the thickness of the cell efficiency has been increases and cost of production can be reduces. Numerical optimizations have been done by adjusting parameters such as the combination of band gap and mismatch as well as the specific structure of the cell. It is shown that by optimization of the considered structure, open circuit voltage increases and an improvement of conversion efficiency has been observed in comparison to the conventional CIGS system. Capacitance–voltage characteristics and depletion region width versus applied voltage for optimized cell and typical cell has been calculated which simulation results predict that by reducing cell layers in the optimized cell structure, there is no drastically changes in depletion layer profile versus applied voltage. From the simulation results it was found that by optimization of the considered structure, optimized value of CIGS and transparent conductive oxide thickness are 0.3 μm and 20 nm and also an improvement of conversion efficiency has been observed in comparison to the conventional CIGS which cell efficiency increases from 17.65 % to 20.34%, respectively.  相似文献   
7.
This work reports unexpected crystallization and segregation behavior of CuIn0.7Ga0.3Se2 (CIGS) thin films deposited on flexible Cu foils by pulsed laser deposition. A composite-type microstructure containing nanometer-scaled CIGS crystallites embedded in amorphous Cu-rich matrix is observed even at the high temperature of 500 °C. The findings are attributed to very fast condensation of the ablated species and random nucleation induced from the amorphous matrix. Cu-rich particulates tend to precipitate on the film surface, and their average size, shape, number density and composition exhibit a strong dependence on the substrate temperature up to 500 °C. The similar crystallization properties of the films on Cu foils and glass substrates are noticeable to the use of Cu foils for flexible solar cells.  相似文献   
8.
Optical absorption measurements were made in the temperature range 9–300 K on the chalcopyrite semiconductor compound AgGaSe2 and the optical energy gap EG determined as a function of temperature T. In order to obtain the values of EG as a function of T, the Elliot-Toyozawa model [R.J. Elliot, J. Phys. Rev. 108 (1957) 1384; D.D. Sell, P. Lawaets, Phys. Rev. Lett. 26 (1971) 311] was employed to perform the analysis of the optical absorption spectra. The resulting EG vs. T curve was fitted to a semi-empirical model that takes into account both the thermal expansion and the electron–phonon interaction contributions. The results have been used to estimate values of the deformation potentials of the valence and conduction bands of the compound.  相似文献   
9.
The transition to renewable energy infrastructure necessitates rapid growth in copper production, averaging at least 3.5% annually to 2050. The current smelting–converting–electrorefining route must be revisited considering these future prospects as ore grades deplete and the costs to mitigate emissions to the environment increase. Here, we investigate electrolytic alternatives, reviewing the background and recent developments for four classes of electrolytes to directly decompose the most important industrial copper mineral, chalcopyrite: aqueous solutions, ionic liquids, molten salts, and molten sulfides. These electrolytes are discussed in the framework of electrochemical engineering, as applied to the electrolytic decomposition of chalcopyrite. A vision is proposed in which an electrolytic technique, integrated with low cost and sustainable power, enables the production of unprecedented annual tonnages of copper from low-grade chalcopyrite, with valuable by-products and enhanced selectivity for impurities.  相似文献   
10.
We presented a theoretical study of electronic band structure of three compounds ZnAl2Te4, ZnGa2Te4 and ZnIn2Te4 using pseudo potential method within density functional theory. Calculated band structures show that all band gaps are direct with at Γ with values of 1.639eV for ZnAl2Te4, 1.026eV for ZnGa2Te4and 0.836eV ZnIn2Te4. The linear properties based on dielectric function and non-linear optical properties based on second harmonic generation (SHG) were computed. The origin of four critical points (peaks) determined from the second derivative of the imaginary part of the dielectric function is elucidated. The use of individual k-points and individual combination of valence and conduction bands dependent matrix of the dielectric function and the nonlinear optical susceptibility allowed to a precise determination of inter band optical transitions. Indeed, inter-band analysis shows the high intensity of non-linear effect compared to linear effect. Moreover, non-linear inter-band optical transitions involve lower valence bands and higher conduction bands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号