首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   9篇
  国内免费   103篇
化学   222篇
晶体学   4篇
力学   1篇
综合类   4篇
物理学   18篇
  2024年   2篇
  2023年   8篇
  2022年   6篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   2篇
  2017年   7篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   9篇
  2011年   8篇
  2010年   12篇
  2009年   5篇
  2008年   12篇
  2007年   9篇
  2006年   17篇
  2005年   13篇
  2004年   10篇
  2003年   6篇
  2002年   9篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   12篇
  1990年   4篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
排序方式: 共有249条查询结果,搜索用时 125 毫秒
1.
刘佳  史俊  付坤  丁超  龚思成  邓慧萍 《化学进展》2021,33(8):1311-1322
20世纪80年代至今,水处理技术中的高级氧化过程(AOP)已被广泛研究及应用。然而水体中的有机污染物仍因种类繁多和降解难易不同困扰着研究者们,因此对于AOP的机理过程需要更深入的分析认识,以利于技术的进一步发展及应用。AOP中的过硫酸盐氧化工艺近年来得到大量关注,其自由基机理的关键活性物种是·OH 和·SO4-。非自由基机理分为1O2氧化和PS直接氧化(也称电子转移),某些体系中高价态金属也直接或间接地参与氧化过程。但非自由基过程的发生机理及优势特点仍存在争议。本文综述了基于多相催化过硫酸盐高级氧化过程处理水中有机污染物的最新研究,阐述反应机理及其分析手段,并指出当前研究可能存在的问题。对于过硫酸盐高级氧化工艺中非自由基过程的未来研究方向及应用前景提出展望。  相似文献   
2.
采用煅烧法制备了以木质素生物炭为载体的单原子催化剂(Ni-N-C-10), 用于高效活化过硫酸盐(PMS)降解苯酚. 利用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 经球差校正的高角度环形暗场扫描透射电子显微镜(AC-HAADF-STEM)、 X射线粉末衍射仪(XRD)以及X射线光电子能谱仪(XPS)等对材料进行了表征分析, 证明合成了原子分散的催化剂Ni-N-C-10. 探究了制备过程中双氰胺的投加量和降解实验中催化剂投加量、 PMS投加量、 pH值以及温度对苯酚降解的影响. 结果表明, 在催化剂制备过程中, 加入10倍质量比的双氰胺更有利于实现原子分散. Ni-N-C-10/PMS体系在较低的催化剂和PMS投加量、 以及较宽的pH值范围(3~9)内都能有效活化PMS降解苯酚. 此外, 该体系的稳定性好且应用范围广, 除了能高效降解苯酚外还能快速降解双酚A、 四环素和亚甲基蓝. 电子顺磁共振检测和自由基淬灭实验结果表明, Ni-N-C-10/PMS体系降解苯酚为SO4?-、 ·OH和1O2 3种主要活性物种共同作用的结果, 其中1O2起主导作用. 反应前后Ni-N-C-10催化剂的XPS分析结果表明, 催化降解苯酚的效率与Ni位点呈正相关.  相似文献   
3.
《大学化学》2021,36(8)
设计了活化过硫酸盐降解模拟染料废水的实验,通过直观的实验现象和过硫酸钠不同活化方式的应用,发挥学生学习的主动性,引导学生查阅相关文献,对实验进行开放式设计及探索。针对不同层次学生采取分层次引导,循序渐进地培养学生的动手能力、解决实际问题的能力和创新能力。  相似文献   
4.
胡龙兴  杨帆  邹联沛  袁航  胡星 《催化学报》2015,(10):1785-1797
由于硫酸根自由基(SO4?-)的强氧化性,基于SO4?-的高级氧化技术受到人们的高度关注.采用过渡金属活化过一硫酸盐(PMS)产生SO4?-用以分解有机物,反应体系简单,反应条件温和,且不需要额外的能量供给,因此,成为人们优先选用的方法,其中,采用高效、环境友好的非均相过渡金属催化剂活化PMS处理难降解有机物成为研究热点.本文研究了非均相CoFe/SBA-15-PMS体系对水中难降解染料罗丹明B(RhB)的降解.以SBA-15为载体, Co(NO3)2·6H2O和Fe(NO3)3·9H2O为前驱物,采用一步等体积浸渍法制备了CoFe/SBA-15,通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、能谱(EDS)、透射电镜(TEM)和振动样品磁强计(VSM)等对其进行了表征.考察了焙烧温度、Co与Fe的负载量对CoFe/SBA-15催化性能的影响和该催化剂的重复使用性能,还考察了RhB降解动力学及催化剂CoFe/SBA-15投加量、氧化剂PMS投加量和反应物(RhB和PMS)初始浓度对其性能的影响,探讨了RhB的降解机理.结果表明:对于催化剂CoFe/SBA-15,合成焙烧后在SBA-15上负载的Fe、Co化合物主要是CoFe2O4复合物,它作为催化剂的活性中心负载在SBA-15的孔道内外.制备的焙烧温度对CoFe/SBA-15催化性能几乎无影响,但对Co浸出影响显著.与SBA-15相比,催化剂10Co9.5Fe/SBA-15-700(Co和Fe负载量分别为10 wt%和9.5 wt%,焙烧温度700 oC)的比表面积、孔体积和孔径均减小,分别为506.1 m2/g,0.669 cm3/g和7.4 nm,但仍然保持SBA-15的有序六方介孔结构.该催化剂以棒状体的聚集态存在,聚集体直径大于0.25μm,其磁化强度为8.3 emu/g,因此,可通过外磁铁容易地从水中分离.相比之下,10Co9.5Fe/SBA-15-700具有最佳的催化性能和稳定性,可使RhB的降解率达到96%以上, Co的浸出量小于32.4μg/L.在CoFe/SBA-15和PMS共存下, RhB的降解符合一级动力学方程, RhB降解速率随CoFe/SBA-15和PMS投加量的增加和初始反应物浓度的减小而提高.淬灭实验结果表明,在CoFe/SBA-15, PMS和RhB水溶液体系中,存在的主要活性自由基为SO4?-,它是由CoFe/SBA-15活化PMS产生的,对RhB的降解起决定性的作用. RhB降解过程的UV-vis结果表明, RhB的降解途径主要是蒽环打开, SO4?-优先攻击RhB的有色芳香烃环,然后RhB进一步分解为小分子有机物. CoFe/SBA-15循环使用10次仍能保持高催化活性和稳定性,在每次反应中RhB的降解率均大于84%, Co和Fe的浸出量均分别小于72.1和35μg/L. CoFe/SBA-15作为高效、环境友好的非均相催化剂可有效地活化PMS产生SO4?-降解水中RhB,具有实际应用的潜力.  相似文献   
5.
通过溶液法合成了一种非中心结构长条状的CsSbSO4F2晶体.其晶体结构属于空间群Pna21,结构中[SbO2F2]与[SO4]多面体共顶点连接形成了一维链状结构,Cs+填充在长链之间维持电荷平衡.利用Kurtz-Perry方法对晶体进行粉末倍频测试,表明CsSbSO4F2属于可相位匹配的物质,其倍频效应约为KH2PO4的0.65倍.紫外-可见光-近红外漫反射光谱显示,该物质的截止波长为233 nm.光学性能测试表明,CsSbSO4F2在紫外区域有潜在应用.  相似文献   
6.
建立了火焰原子吸收光谱法测定饲料级硫酸盐中铜的方法,讨论了共存离子的干扰情况.在最佳实验条件下,该方法测定铜的特征浓度为0.019μg/mL,相对标准偏差为0.24%,样品加标回收率为99.2%-105.6%.被分析的饲料级硫酸盐中的共存离子对铜的测定基本无干扰.方法简便、快速,具有较高的准确度和精密度,适合用于饲料级硫酸盐中微量铜的测定.  相似文献   
7.
以多巴胺、钼酸铵、碳酸氢铵为原料,通过一步煅烧法合成一种 MoO2@氮掺杂碳复合物(MoO2@CN),并利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、拉曼光谱(Raman)等对其进行表征。以卡马西平(CBZ)为目标污染物,以过一硫酸氢钾(PMS)为氧化剂,在温度为25 ℃、pH为6.5的条件下,MoO2@CN/PMS在12 min内对CBZ的去除率达99.2%,与商用MoO2相比,其表观速率常数kobs(0.393 min-1)是商用MoO2(0.016 4 min-1)的24.0倍,这主要是由于制备的MoO2@CN比商用MoO2具有更好的电子传输能力以及更大的比表面积。MoO2@CN在 pH为 2.5~10.5时均能有效降解 CBZ,而且对大多数染料、酚类化合物、抗生素等多种污染物均具有良好的降解性能。此外,MoO2@CN/PMS在60 min内对CBZ的总有机碳(TOC)去除率高达74.0%。电子顺磁共振波谱(EPR)和自由基猝灭实验显示MoO2@CN/PMS体系中主要起作用是硫酸根自由基(SO4·-)和羟基自由基(·OH)。更有意思的是,在Fe2+/PMS体系加入MoO2@CN后,其催化降解CBZ的性能显著增强,kobs(1.25 min-1)是单独Fe2+/PMS体系(0.079 7 min-1)的15.7倍,这主要归因于MoO2@CN的引入加快了Fe3+到Fe2+的转变,导致更多·OH的生成。  相似文献   
8.
以哌嗪为模板剂,在水-乙醇混合溶剂体系中溶剂热合成了两个具有三维开放骨架结构的稀土硫酸盐[Ln4(H2O)4(SO4)10](C4N2H12)4(H2O)4(Ln = Gd,化合物1和Eu,化合物2),并对其进行了结构表征、热重以及荧光光谱分析. 单晶结构解析表明,化合物1和2属于同构异质,均结晶于单斜晶系,P21/c空间群,化合物1,a = 19.691(3) ?,b = 19.249(3) ?,c = 13.186(2) ?,β = 92.33(0)o,V = 4993.5(1) ?3, Z =4. 化合物2,a = 19.7233(8) ?,b = 19.2791(8) ?,c = 13.2095(5) ?,β = 92.329(1)o,V = 5018.7(3) ?3, Z =4. 两个化合物在ab平面上由SO4,GdO8和GdO9多面体共边或共角交错连接形成含有八元环和十六元环的二维层状结构,该二维层沿c方向平行排列,相邻层通过SO4四面体相连形成具有孔道的三维开放骨架结构,其孔道之中包含平衡骨架负电荷的质子化哌嗪分子. 化合物2的固体荧光光谱分析显示其在397nm激发波长下,表现出典型的Eu3+发光性质.    相似文献   
9.
采用等温溶解平衡法研究了四元体系Na+,K+//Br-,SO42--H2O在323 K的相平衡关系,测定了该体系323 K的溶解度及平衡液相的密度,绘制了该体系的相图。研究发现:平衡体系存在复盐钾芒硝Na2SO4·3K2SO4的结晶区。其相图由3个共饱和点,7条单变量曲线和5个结晶区组成。相区分别对应NaBr·2H2O、Na2SO4、K2SO4、KBr和Na2SO4·3K2SO4结晶区。其中复盐钾芒硝Na2SO4·3K2SO4,Na2SO4和K2SO4有较大结晶区,而NaBr·2H2O和KBr有较小结晶区。对比了等温条件下四元体系Na+,K+//Cl-,SO42--H2O相平衡结果。实验结果表明溴化物对硫酸盐有较强盐析作用。  相似文献   
10.
近几年过一硫酸盐(PMS)活化技术备受关注,其中利用太阳能活化PMS具有可持续和环保的优势,但PMS本身不吸收可见光.因此,本文提出利用具有可见光响应的石墨相氮化碳(g-C3N4)激发产生光电子进而活化PMS.首先利用三聚氰胺前驱体通过热缩聚法制备g-C3N4,通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见光漫反射(UV-Vis)、荧光光谱(PL)、透射电镜(TEM)、N2吸附脱附测试(BET)、电化学等一系列方法对g-C3N4进行表征,研究其表面性质及光学性能.结果显示, g-C3N4具有典型的片层结构和可见光活性,禁带宽度为2.7 e V.本文选取光惰性的内分泌干扰物邻苯二甲酸二甲酯(DMP)为目标污染物,系统地研究了其降解动力学和降解机理.研究发现,在短波紫外光(254和300nm)照射下,直接光解和·OH参与的反应机理能实现DMP的光降解,而在可见光照射下g-C3N4介导的光催化过程不能使DMP分解;但当添加PMS时,体系主导自由基由·O2–转化为SO4·–和·OH,从而实现DMP的有效降解和矿化.研究还发现,高浓度的PMS和高剂量的g-C3N4均可以提高PMS的活化量和相应的DMP降解效率,但提高催化剂剂量的方式能更充分的利用PMS.尽管高浓度的DMP阻碍了PMS和光催化剂g-C3N4的有效接触,但可以提高PMS的利用率.当p H低于零电荷点(5.4)时, DMP的降解效率较高.此外,使用两种淬灭剂(乙醇和叔丁醇)与DMP进行竞争性实验,结合电子自旋共振检测,表明SO4·–和·OH都是体系主要的自由基.此外,还对g-C3N4的可持续性能进行考察,四次循环实验结果显示,该催化剂具有良好的可重复利用性.对DMP降解进行总有机碳测定,发现降低了19%.最后,利用液相色谱质谱联用对DMP降解产物进行定性定量分析,发现DMP主要通过SO4·–和·OH对苯环的攻击以及脂肪族链的氧化断键这两种途径进行降解.综上可见,利用可见光激发g-C3N4产生的光电子能有效活化PMS降解顽固型有机污染物,可为实现太阳能活化PMS技术提供有力的技术参考.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号