首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   7篇
化学   82篇
物理学   10篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   9篇
  2015年   6篇
  2014年   6篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1986年   2篇
排序方式: 共有92条查询结果,搜索用时 312 毫秒
1.
Yantasee W  Timchalk C  Weitz KK  Moore DA  Lin Y 《Talanta》2005,67(3):617-624
There is a need to develop reliable portable analytical systems for on-site and real-time biomonitoring of lead (Pb) from both occupational and environmental exposures. Saliva is an appealing matrix since it is easily obtainable, and therefore a potential substitute for blood due to existing reasonably good correlation between Pb levels in blood and saliva. The microanalytical system is based on flow-injection/stripping voltammetry with a wall-jet (flow-onto) microelectrochemical cell. Samples that contain as little as 1% saliva can cause electrode fouling, resulting in significantly reduced responsiveness and irreproducible quantitations. In addition, incomplete Pb release from salivary protein can also yield a lower Pb response than expected. This paper evaluates the extent of in vitro Pb-protein binding and the optimal pretreatment for releasing Pb from the saliva samples. Even in 50% by volume of rat saliva, the electrode fouling was not observed, due to the appropriate sample pretreatment and the constant flow of the sample and acidic carrier that prevented passivation by the protein. The system offered a linear response over a low Pb range of 1-10 ppb, low detection limit of 1 ppb, excellent reproducibility, and reliability. It also yielded the same Pb concentrations in unknown samples as did the ICP-MS. These encouraging results suggest that the microanalytical system represents an important analytical advancement for real-time non-invasive biomonitoring of Pb.  相似文献   
2.
Adsorption of protein from saliva on hydroxyapatite was compared with adsorption of several typical proteins with different electric charges, i.e. lysozyme, human serum albumin, β-lactoglobulin and ovalbumin. Adsorbed amounts of these proteins were determined and electrophoretic mobilities of protein-covered hydroxyapatite particles were measured, at different values for the adsorbed mass and, therefore, at various degrees of surface coverage. Also, adsorption kinetics were investigated by streaming potential measurements of a hydroxyapatite surface in contact with a protein solution, allowing monitoring of changes in the zeta-potential of the protein-covered hydroxyapatite surface in real time. The adsorbed amounts show that, as compared to most of the other proteins, the saliva proteins have remarkably low adsorption affinity. The measured values for the electrophoretic mobilities indicate that the positively charged proteins in the saliva mixture preferentially adsorb onto the negatively charged hydroxyapatite surface; this is most pronounced at low protein concentration in solution (i.e. at low coverage of the surface by the protein). Preferential uptake of the positively charged saliva proteins during the initial stages of the adsorption process is also concluded from the results of the kinetics experiments. Preferential adsorption of positive proteins is somewhat suppressed by the presence of Ca2+ ions in the medium. The results suggest that an acquired pellicle on a tooth in an oral environment contains a significant fraction of positively charged proteins. The positively charged proteins in the pellicle reduce the zeta-potential at the tooth surface to low values; consequently, electrostatic forces are expected to play only a minor role in the interaction with other components (e.g. bacterial cells).  相似文献   
3.
The electrospray ionisation-ion trap mass spectrometry (ESI-MSn) of selected hypnotic drugs, i.e. zopiclone, zolpidem, flunitrazepam and their metabolites have been investigated. Sequential product ion fragmentation experiments (MSn) have been performed in order to elucidate the degradation pathways for the [M+H]+ ions and their predominant fragment ions. These MSn experiments show certain characteristic fragmentations in that functional groups are generally cleaved from the ring systems as neutral molecules such as H2O, CO, CO2, NO2, amines and HF. When an aromatic entity is present in a drug molecule together with a nitrogen-containing saturated ring structure as with zopiclone and its N-desmethyl metabolite fragmentation initially occurs at the latter ring with the former being resistant to fragmentation. The structures of fragment ions proposed for ESI-MSn can be supported by electrospray ionisation-quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS).These molecules can be identified and determined in mixtures at low ng/ml concentrations by the application of liquid chromatography (LC)-ESI-MSn which can be used for their analysis in saliva samples.This paper includes a tabulation of mass losses/signals at low m/z values for these hypnotic drugs and many others in recent publications which will be of value in the characterisation of drug metabolites of unknown structure and also natural product pharmaceuticals isolated from plants, etc.  相似文献   
4.
This work demonstrates the analytical applicability of single ion-selective membranes (ISMs) and potentiometric sensor array to distinguish and detect cathinone derivatives. Potentiometric data from ISMs based on cation exchanger and varying content of calix[4]arene derivative were processed by principal component analysis (PCA). Such a combination of methods allowed discriminating various individual synthetic cathinones and their recognition from the mixture comprising primary amines (substituted amphetamines+aminoindane). Analytical parameters of ISM containing 1wt % of calix[4]arene derivative were sufficient to detect 1.0×10−4 mol.l−1 1-(4-fluorophenyl)-2-(ethylamino)butan-1-one and 2-(methylamino)-1-phenylbutan-1-one (buphedrone) in both model and saliva samples.  相似文献   
5.
Here, a quantitative electrochemical analysis of periodontal bacteria in gingival crevicular fluid (GCF) and saliva by direct polymerase chain reaction (PCR) is presented. The electrochemical measurement was performed by mixing with PCR products and electrochemical indicator (bisbenzimidazole trihydrochloride). The peak current of indicator is reduced due to slower diffusion when the dye intercalates into the amplified DNA, and the degree of reduction in the peak current is correlates with the quantity of amplified DNA. Therefore, a quantitative analysis is possible by using our electrochemical method at the end point of PCR. In the GCF testing, The number of Porphyromonas gingivalis (Pg) detected by our electrochemical method at the end point of PCR were almost same compared with that were calculated by the conventional method of quantitative real? time PCR. In the saliva testing, the relationship between number of Pg in saliva and average pocket depth, and age‐dependence were also clearly observed. Since the saliva sample is obtained in a non‐invasive manner, this method is useful for the primary screening of periodontal disease. Moreover, our detection method is simple and uses a hand‐held potentiostat making it suitable for development of an on‐site periodontal diagnosis system.  相似文献   
6.
A hollow-fiber liquid-phase microextraction (HF-LPME) method has been developed for the purification and preconcentration of biogenic polyamines and their precursor amino acids in human saliva. Putrescine (Put), cadaverine (Cad), spermidine (Spe), ornithine (Orn), lysine (Lys), and arginine (Arg) were determined by the CE-LIF detection after microextraction. Several factors that affect extraction efficiency, separation, and detection were investigated. Under the optimum conditions, six analytes could achieve baseline separation within 30 min, exhibiting a linear calibration at three orders of magnitude (r2 〉 0.998); the obtained enrichment factors of HF-LPME were between 19 (for Orn) and 2] 8 (for Cad), and the LODs were in the range of 0.0072-0.26 nmol/L. The proposed HF-LPME/CE-LIF method has been successfully applied for the sensitive analyses of the real-world saliva samples collected from healthy volunteers and different patients with oral diseases, providing a potential method for primary non-invasive diagnosis of some oral diseases.  相似文献   
7.
ICP-AES测定Ni-Cr合金在人工唾液中析出的Ni离子   总被引:2,自引:0,他引:2  
在模拟口腔环境下用人工唾液浸泡Ni-Cr桥,150h后采用ICP-AES测定Ni-Cr桥在人工唾液中的Ni离子析出量.镍在0.01-7.5μg/mL内有良好的线性关系,相关系数为0.9998;方法检出限为0.0059μg/mL;标准加入法测定镍的回收率为92.3%-99.8%.  相似文献   
8.
Electrochemical biosensors for lactate were assembled and used for the determination of lactic acid in saliva. Saliva was collected from healthy subjects and immediately screened for its lactate content. The electrochemical and biological interferences from saliva were discriminated by using a dual platinum electrode and blocking membranes. The stability, reproducibility and lifetime of the probe were studied. Lactate was measured in eight subjects in fasting conditions and after eating, showing an increase in lactate for each subject after meals. Correlation with a spectrophotometric lactate measurement is reported. Subjects before, during and after physical exercise showed consistent variations of lactate in saliva.  相似文献   
9.
An electrochemical immunosensor for ghrelin (GHRL) determination in saliva is reported. Anti‐GHRL was immobilized onto Protein G‐magnetic beads and a competitive immunoassay involving biotinylated GHRL and alkaline phosphatase‐streptavidin was implemented. Once conjugate was magnetically captured on a screen‐printed carbon electrode, GHRL quantization was accomplished by DPV of 1‐naphtol formed upon addition of 1‐naphtyl phosphate. A linear range between 10?3 and 103 ng/mL GHRL, and a LOD of 7 pg/mL, much smaller than those from commercial ELISA kits, were found. The usefulness of the immunosensor was demonstrated by analyzing human saliva spiked with GHRL at 0.01, 0.1, 1 and 10 ng/mL.  相似文献   
10.
This article describes the use of the mesoporous molecular sieve KIT‐6 as a sorbent in miniaturized matrix solid‐phase dispersion (MSPD) in combination with ultra‐performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT‐6 was used as a sorbent material for this mode of extraction. Compared with common silica‐based sorbents (C18 and activated silica gel), the proposed KIT‐6 dispersant with a three‐dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting “green chemistry” requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02–0.04 μg/mL and 0.07–0.13 μg/mL, respectively. Finally, the miniaturized matrix solid‐phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号