首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   12篇
物理学   1篇
  2019年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Polycrystalline samples of bilayered brownmillerite-like Ca2.5Sr0.5GaCo0.15Mn1.85O8 and Ca2.5Sr0.5Ga1.2Mn1.8O8 have been prepared and characterised by magnetometry and neutron diffraction over a wide temperature range. The structural chemistry and magnetic properties are compared to those of Ca2.5Sr0.5GaMn2O8. Ga enrichment has a significant effect on the former but not on the latter, whereas changes in both occur when paramagnetic Co3+ cations enter the parent phase on the 4-coordinate sites. The coupling between the environment around the 4-coordinate cations and the transition to an antiferromagnetic ordered state that was observed in Ca2.5Sr0.5GaMn2O8 is not apparent in the cation-substituted compositions, although both show long-range antiferromagnetic order at low temperatures.  相似文献   
2.
Brownmillerite calcium ferrite was synthesized in air at 1573 K and thermoelectric properties (direct current electrical conductivity σ, Seebeck coefficient α, thermal conductivity κ, thermal expansion αL) were measured from 373 to 1050 K in air. Seebeck coefficient was positive over all temperatures indicating conduction by holes, and electrical properties were continuous through the Pnma-Imma phase transition. Based on the thermopower and conductivity activation energies as well as estimated mobility, polaron hopping conduction was found to dominate charge transport. The low electrical conductivity, <1 S/cm, limits the power factor (α2σ), and thus the figure of merit for thermoelectric applications. The thermal conductivity values of ∼2 W/mK and their similarity to Ruddlesden-Popper phase implies the potential of the alternating tetrahedral and octahedral layers to limit phonon propagation through brownmillerite structures. Bulk linear coefficient of thermal expansion (∼14×10−6 K−1) was calculated from volume data based on high-temperature in situ X-ray powder diffraction, and shows the greatest expansion perpendicular to the alternating layers.  相似文献   
3.
The topotactic reduction of La1−xSrxMnO3 (0.2<x<0.4) perovskite phases to the corresponding La1−xSrxMnO2.5 brownmillerite phases with NaH is described. Neutron and electron diffraction data show the x=0.25 and 0.2 phases adopt structures with an unusual ordered L-R-L-R alternation of twisted chains of Mn(II) tetrahedra within each anion-deficient layer. This is accompanied by Mn(II)/(III) charge ordering within the remaining MnO6 octahedral layers. In contrast, the x=0.4 phase adopts a structure in which the twisted chains of tetrahedra are disordered.  相似文献   
4.
The novel oxide Sr2Co2−xGaxO5 with brownmillerite-type structure has been synthesized in the compositional range 0.3?x?0.8. Rietveld refinements using neutron powder diffraction data have been performed for the end compositions, x=0.3 and 0.8. The structure is best described in the space-group Icmm (no. 74) with unit cell parameters a=5.5678(6), 5.6126(7) Å, b=15.749(2), 15.733(2) Å and c=5.4599(6), 5.4559(7) Å for the x=0.3 and 0.8 compositions, respectively. The compounds were found to be G-type antiferromagnetic with the magnetic moments parallel to the c-axis. High-temperature magnetic susceptibility measurements confirmed the samples to be antiferromagnetic with Néel temperatures TN=505, 468 and 423 K for the x=0.3, 0.5 and 0.8 samples, respectively. High-resolution transmission electron microscopy and electron diffraction studies confirmed the I-centred structure and revealed the presence of disorder.  相似文献   
5.
The oxide solid solutions SrFe1−xMoxO3−δ, where x=0.05, 0.1 and 0.2, are studied in this work. It is shown that substitution of iron for molybdenum results in stabilization of a cubic quasi-perovskite locally inhomogeneous structure, which is evidenced by HREM and Mössbauer spectroscopy. The coulometric titration is used in order to determine changes of oxygen nonstoichiometry in the obtained solutions with temperature and ambient oxygen partial pressure. Partial molar thermodynamic functions of the labile oxygen are calculated from the measured data. The variations of partial molar entropy with oxygen content follow the ideal gas model reasonably well thus demonstrating approximately random distribution of oxygen vacancies in the doped ferrite at high temperatures. The partial molar enthalpy is found to increase with doping, which is indicative of a progressive decrease in average values of the bonding energy of labile oxygen ions. The measurements of total conductivity are used in order to determine partial contributions of charge carriers. The oxygen ion component is shown to increase at small level of doping, x=0.05 while further increase in molybdenum content is accompanied with the decline in the ion conductivity. The electron contribution in reducing conditions tends to increase with molybdenum content, which is interpreted as a manifestation of involvement of Mo5+ cations in electron transport. Concentration and mobility of electron carriers are calculated. Some increase in mobility of electron holes at small doping is explained as related to the filling of oxygen vacancies.  相似文献   
6.
A new layered perovskite Sr2Al0.78Mn1.22O5.2 has been synthesized by solid state reaction in a sealed evacuated silica tube. The crystal structure has been determined using electron diffraction, high-resolution electron microscopy, and high-angle annular dark field imaging and refined from X-ray powder diffraction data (space group P4/mmm, a=3.89023(5) Å, c=7.8034(1) Å, RI=0.023, RP=0.015). The structure is characterized by an alternation of MnO2 and (Al0.78Mn0.22)O1.2 layers. Oxygen atoms and vacancies, as well as the Al and Mn atoms in the (Al0.78Mn0.22)O1.2 layers are disordered. The local atomic arrangement in these layers is suggested to consist of short fragments of brownmillerite-type tetrahedral chains of corner-sharing AlO4 tetrahedra interrupted by MnO6 octahedra, at which the chain fragments rotate over 90°. This results in an averaged tetragonal symmetry. This is confirmed by the valence state of Mn measured by EELS. The relationship between the Sr2Al0.78Mn1.22O5.2 tetragonal perovskite and the parent Sr2Al1.07Mn0.93O5 brownmillerite is discussed. Magnetic susceptibility measurements indicate spin glass behavior of Sr2Al0.78Mn1.22O5.2. The lack of long-range magnetic ordering contrasts with Mn-containing brownmillerites and is likely caused by the frustration of interlayer interactions due to presence of the Mn atoms in the (Al0.78Mn0.22)O1.2 layers.  相似文献   
7.
Ca2Fe1−xMnxAlO5 (0?x?1) compounds were prepared by a self-combustion method under air (x=0, 0.1, 0.2 and 0.3) and nitrogen (x=0.5, 0.7 and 1.0). The samples prepared under nitrogen were successfully oxidized after short annealing under air. Both X-ray powder diffraction (XRD) Rietveld analysis and electron diffraction revealed that all compounds adopt the brownmillerite-type structure. All samples present an overall antiferromagnetic behaviour and data from magnetic measurements and Mössbauer spectroscopy allowed to conclude that the transition temperature decreases as Mn content increases for x?0.3 and increases in the case of the x?0.5 compounds. Except for x=1, chemical disorder due to the occupancy of both octahedral and tetrahedral sites by different metals as well as the competition between different moments’ orientation induce a complex magnetic behaviour characterized by magnetic frustration and canted antiferromagnetism. Mössbauer spectroscopy and chemical titrations also allowed to conclude about the preferential oxidation of Mn3+ over Fe3+, obtained by thermal treatment under air of the x=0.5 and 0.7 compositions.  相似文献   
8.
The behavior of Ca2AlFeO5 brownmillerite was studied by in situ synchrotron X-ray diffraction and Raman spectroscopy at 300?K with pressures up to 26.5 and 32.1 GPa, respectively. A reversible structural phase transition was observed. The P–V data were fitted by a third-order Birch–Murnaghan equation of state, and the isothermal bulk modulus was obtained as K0?=?181.9(76) GPa with K0?=?4.4(17). If K0′ was fixed to 4, K0 was obtained as 183.8(20) GPa. Ca2AlFeO5 brownmillerite shows an axial elastic anisotropy since the b-axis is more compressible than a- and c-axis. Combined with previous results, the isothermal bulk modulus and axial compressibility of Ca2AlFeO5 brownmillerite increase with more Al incorporated in the structure. The Raman spectra of Ca2AlFeO5 brownmillerite were analyzed and the pressure coefficients vary from 2.23 to 4.90?cm?1/GPa. The isothermal mode Grüneisen parameters range from 0.83 to 1.77 and the thermal Grüneisen parameter is determined as 1.08(11).  相似文献   
9.
The structural characterization, thermogravimetric analysis and electrical properties for solid solution system, (Ba1–xLax)2In2O5+x with perovskite-type structure were investigated. X-ray diffraction showed that the orthorhombic phase was in the range of 0.0<x0.3, the tetragonal phase 0.3<x0.5, and the cubic phase 0.5<x. The sharp transition of electrical conductivity shifted to a lower temperature with increasing x and disappeared at the phase boundary between the orthorhombic and tetragonal phases. This perovskite-related oxide exhibited a pure oxide-ion conduction over the oxygen partial pressure range of 1 atm to 10–3.5 atm, and the electrical conductivity reached the value of 1.610–1 (S cm–1) at 1073 K, which was nearly equal to that of the yttria stabilized zirconia. These properties were successfully explained in terms of disordered oxygen ions.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
10.
Ca2FeAl1−xMgxO5 (x=0, 0.05 and 0.1) compounds adopting the brownmillerite-type structure were prepared by a self-combustion route using two different fuels. Characterisation was performed using X-ray powder diffraction, Mössbauer spectroscopy, magnetisation measurements, chemical analysis, scanning electron microscopy and 4-point dc conductivity measurements. Global results indicate that the solubility limit was reached for x=0.1. An antiferromagnetic behaviour was detected for all studied compositions, with magnetic ordering temperatures of 340 and 290 K for x=0 and 0.05, respectively. Mg doping increases the number of iron cations in tetrahedral sites, which induces magnetisation enhancement at low temperatures through the coupling between octahedral iron cations in different octahedral planes. The compounds exhibit semiconductor behaviour and Mg2+ doping yields a significant enhancement of the total conductivity, which can be essentially attributed to the presence of Fe4+ ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号