首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10232篇
  免费   1559篇
  国内免费   1323篇
化学   7627篇
晶体学   89篇
力学   669篇
综合类   87篇
数学   1097篇
物理学   3545篇
  2024年   11篇
  2023年   198篇
  2022年   224篇
  2021年   311篇
  2020年   394篇
  2019年   378篇
  2018年   285篇
  2017年   264篇
  2016年   462篇
  2015年   394篇
  2014年   582篇
  2013年   698篇
  2012年   861篇
  2011年   930篇
  2010年   635篇
  2009年   624篇
  2008年   716篇
  2007年   630篇
  2006年   514篇
  2005年   541篇
  2004年   394篇
  2003年   347篇
  2002年   348篇
  2001年   284篇
  2000年   243篇
  1999年   214篇
  1998年   215篇
  1997年   185篇
  1996年   177篇
  1995年   129篇
  1994年   156篇
  1993年   111篇
  1992年   123篇
  1991年   104篇
  1990年   85篇
  1989年   85篇
  1988年   49篇
  1987年   26篇
  1986年   39篇
  1985年   26篇
  1984年   16篇
  1983年   18篇
  1982年   13篇
  1981年   8篇
  1980年   8篇
  1978年   8篇
  1977年   7篇
  1976年   7篇
  1975年   5篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
本研究采用水热法,以柠檬酸为螯合剂,通过控制n(Sn4+)/n(Sn2+)的数值,合成了由具有丰富氧空位的SnO2纳米晶体组装成的微球。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)及UV-Vis漫反射光谱对SnO2纳米微球进行表征分析,结果表明:在酸性水热条件和柠檬酸的螯合作用下,二氧化锡纳米晶体聚集形成微球;在Sn4+/Sn2+摩尔比例为3:7时,其微球尺寸最小,整体分散性较好;同时适量二价锡离子的掺杂使得该样品氧空位浓度达到最佳,氧空位的存在将使得样品光吸收范围拓展至可见光,因而该样品显示出较强的可见光催化效率,在8 min内完全降解甲基橙。  相似文献   
2.
Asymmetric mode transformation in waveguide is of great significance for on-chip integrated devices with one-way effect, while it is challenging to achieve asymmetric nonlinear-mode-conversion (NMC) due to the limitations imposed by phase-matching. In this work, we theoretically proposed a new scheme for realizing asymmetric NMC by combining frequency-doubling process and periodic PT symmetric modulation in an optical waveguide. By engineering the one-way momentum from PT symmetric modulation, we have demonstrated the unidirectional conversion from pump to second harmonic with desired guided modes. Our findings offer new opportunities for manipulating nonlinear optical fields with PT symmetry, which could further boost more exploration on on-chip nonlinear devices assisted by non-Hermitian optics.  相似文献   
3.
Several phenoxy-imine ligands bearing o-trityl group in phenoxy moiety RN=CHArOH (Ar = C6H2(CPh3)tBu, R = 2,6-Me2C6H3 ( L 1 H ); 2,6-iPr2C6H3 ( L 2 H ); 3,5-(CF3)2C6H3 ( L 3 H ); 3,5-(OMe)2C6H3 ( L 4 H ); CHPh2 ( L 5 H ); CPh3 ( L 6 H )) were synthesized and characterized by1H NMR and 13C NMR spectroscopy. The vanadium complexes based on these ligands LVCl2(THF)2 ( 1–6 ) were synthesized via conventional transmetalation reaction in moderate to high yields. Complexes 1–6 were fully characterized by FT-IR, elemental analyses and the molecular structures of 1 , 2 ·H2O, (2 ·H2O ) 2 (μ-Cl) 2 , 4 , and 5 were confirmed by X-ray crystallographic analysis in which the six-coordinated vanadium centers are in a typical octahedral geometry. Upon activation with Et2AlCl in toluene, complexes 1–6 showed high activities in ethylene polymerization affording polymers with moderate molecular weight (5.9–11.8 × 104 Da). Moreover, in hexane or CH2Cl2, 1–6 /Et2AlCl exhibited enhanced activities. When activated with MAO or MMAO in toluene, these complexes showed relatively low activities but afforded polymers with ultra-high molecular weight (up to 3.30 × 106 Da). 1–6 /Et2AlCl also showed high activities in ethylene/1-hexene copolymerization at room temperature giving moderate molecular-weight polymers (6.5–11.4 × 104 Da) with co-monomer incorporation being of 6.0 ~ 7.8%.  相似文献   
4.
5.
Many experimental results have revealed that the re‐entanglement kinetics of disentangled polymers is much slower than that predicted by tube theory. This retarded recovery of fully entangled state is of practical significance that shear‐induced modification may offer a way to improve processability for a polymer by reducing viscosity. This work tried to figure out the shear‐rate dependence variation of viscosity in the view of evolution of entanglement state through disentanglement and re‐entanglement, aiming to provide fundamental insights into application prospect of shear‐induced modification in preparing “in‐pellet” disentangled polymers prior to final processing. High‐density polyethylene was sheared on a parallel‐plate rotational rheometer with a linearly increased shear rate. Results showed that higher shear rate could induce further disentanglement, resulting in a lower viscosity with a reduction rate up to 93.7%, larger molecular weight between entanglements Me , and longer re‐entanglement time. Additionally, less entanglement would give a larger lamellar thickness of sheared samples after nonisothermal crystallization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 598–606  相似文献   
6.
A novel luminescent metal–organic framework ( Zn‐TCPP/BPY ) with pillared structure based on 2,3,5,6‐tetrakis(4‐carboxyphenyl)pyrazine (H4TCPP) and 4,4′‐bipyridine (BPY) has been designed and synthesized through a solvothermal reaction. The [Zn2(COO)4] paddlewheel units are linked by TCPP4? ligands to form two‐dimensional layers and further connected by BPY ligands as pillars to construct the twofold interpenetrating three‐dimensional framework. Interestingly, Zn‐TCPP/BPY possesses outstanding stability in organic solvents and water as well as maintains its structural rigidity in aqueous solutions of different pH values (3–12). After activation, Zn‐TCPP/BPY possesses permanent porosity with Brunauer–Emmett–Teller surface area of 630 m2 g–1. Remarkably, Zn‐TCPP/BPY displays excellent fluorescent property in virtue of the aggregation‐induced emission effect of the H4TCPP ligand, which can be highly active and quenched by small amounts of 2,4,6‐trinitrophenol (TNP) and Fe3+ ions. Furthermore, the detection effect of Zn‐TCPP/BPY remains basically the same even after five cycles. The excellent stability, high sensitivity, and recyclability of Zn‐TCPP/BPY make it an outstanding chemical sensor for detecting TNP and Fe3+ ions.  相似文献   
7.
Organic–inorganic hybrid perovskite-type multiferroics have attracted considerable research interest owing to their fundamental scientific significance and promising technological applications in sensors and multiple-state memories. The recent achievements with divalent metal dicyanamide compounds revealed such malleable frameworks as a unique platform for developing novel functional materials. Herein, two 3D organic–inorganic hybrid perovskites [Et3P(CH2)2F][Mn(dca)3] ( 1 ) and [Et3P(CH2)2Cl][Mn(dca)3] ( 2 ) (dca=dicyanamide, N(CN)2) are presented. Accompanying the sequential phase transitions, they display a broad range of intriguing physical properties, including above room temperature ferroelastic behavior, switchable dielectricity, and low-temperature antiferromagnetic ordering (Tc=2.4 K for both 1 and 2 ). It is also worth noting that the spontaneous strain value of 1 is far beyond that of 2 in the first ferroelastic phase, as a result of the precise halogen substitution. From the point view of molecular design, this work should inspire further exploration of multifunctional molecular materials with desirable properties.  相似文献   
8.
Cerebrovascular diseases (CVDs) are among the most serious diseases with high mortality and disability rates. The prevalent diagnosis and treatment methods of CVDs include imaging and interventional therapy. With the development of nanotechnology, large numbers of nanomaterials have been applied to the diagnosis and treatment of CVDs, mainly including carbon nanotubes, quantum dots, fullerenes, and dendrimers. In this review, the applications of nanomaterials in the field of diagnosis and treatment of CVDs, mainly including drug target delivery, imaging, therapy, endovascular treatment, and angiogenesis, are summarized. The applications of nanomaterials in the field of CVD are almost in the laboratory, and more effort is needed for clinical translation. The aim of this review is to provide useful information for future research and equipment development.  相似文献   
9.
International Journal of Theoretical Physics - A new quantum watermark algorithm is presented by combining maximum pixel difference partitioning with the least significant bit substitution...  相似文献   
10.
Cu‐doped Ni‐based metal–organic frameworks (MOFs) nanomaterials fabricated through a one‐pot hydrothermal reaction were characterized, and their performance as supercapacitor electrode materials was further studied for the first time. The results indicated that the doping of foreign metals and the introduction of K3[Fe(CN)6] in the KOH electrolyte significantly improve the performance of the supercapacitor. The results indicated that the Ni2.6Cu0.4 MOFs material shows the highest specific capacitance (1282 F g?1 at 1 A g?1 in mixed 2 M KOH and 0.1 M K3[Fe(CN)6]) and optimal capacitance retention (85.7% after 2000 cycles). This work provides a feasible optimization strategy for the construction of MOFs‐based supercapacitor electrode materials with excellent performance, and also provides a reliable experimental and theoretical basis for practical industrial production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号