首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   3篇
物理学   4篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  1976年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor®) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor® substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor®, and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real, microfluidic systems. This method provides a straightforward and rapid way to screen surface compositions and chemistry, and relate these to their effects on the sensitivity and resistance to non-specific binding of bioassays using them. In an additional set of experiments, the surface area of the channels in this universal microfluidic chip was increased by precision milling of microscale trenches. This modified surface was then coated with APTES and tested for its potential to serve as a unique protein dilution feature.  相似文献   
2.
In this paper we report a centrifugal microfluidic “lab-on-a-disc” system for at-line monitoring of human immunoglobulin G (hIgG) in a typical bioprocess environment. The novelty of this device is the combination of a heterogeneous sandwich immunoassay on a serial siphon-enabled microfluidic disc with automated sequential reagent delivery and surface-confined supercritical angle fluorescence (SAF)-based detection. The device, which is compact, easy-to-use and inexpensive, enables rapid detection of hIgG from a bioprocess sample. This was achieved with, an injection moulded SAF lens that was functionalized with aminopropyltriethoxysilane (APTES) using plasma enhanced chemical vapour deposition (PECVD) for the immobilization of protein A, and a hybrid integration with a microfluidic disc substrate. Advanced flow control, including the time-sequenced release of on-board liquid reagents, was implemented by serial siphoning with ancillary capillary stops. The concentration of surfactant in each assay reagent was optimized to ensure proper functioning of the siphon-based flow control. The entire automated microfluidic assay process is completed in less than 30 min. The developed prototype system was used to accurately measure industrial bioprocess samples that contained 10 mg mL−1 of hIgG.  相似文献   
3.
We present results of a Monte Carlo study over the ferromagnetism of Co-doped ZnO. The magnetic interaction has the form of the donor impurity band exchange model, where the Co magnetic moments are exchange coupled to band electrons. These are assumed to occupy large hydrogenic orbitals and originate from shallow intrinsic ZnO defects. A number of parameters of this model remain uncertain and here we investigate the dependence of the Curie temperature on the strength of the magnetic coupling. We find an unusual concave upward shape in the magnetization curves consistent with other Monte Carlo studies for dilute systems and we predict high temperature ferromagnetism for sufficiently strong coupling.  相似文献   
4.
The finite volume particle method (FVPM) is a mesh-free method for fluid dynamics which allows simple and accurate implementation of boundary conditions and retains the conservation and consistency properties of classical finite volume methods. In this article, the FVPM is extended to viscous flows using a consistency-corrected smoothed particle hydrodynamics (SPH) approximation to evaluate velocity gradients. The accuracy of the viscous FVPM is improved by a higher-order discretisation of the inviscid flux combined with a second-order temporal discretisation. The higher-order inviscid FVPM is validated for a 1-D shock tube problem, in which it demonstrates an enhanced shock capturing ability. For two-dimensional simulations, a small arbitrary Lagrange–Euler correction to fully Lagrangian particle motion is beneficial in maintaining a favourable particle distribution over long simulation times. The viscous FVPM is validated for two-dimensional Poiseuille, Taylor–Green and lid-driven cavity flows, and good agreement is achieved with analytic or reference numerical solutions. These results establish the viability of FVPM as a tool for mesh-free simulation of viscous flows in engineering.  相似文献   
5.
Alkylidenebisamides and alkylidenebiscarbamates were found to react with oxalyl chloride to give oxazolidinediones ( 2 ), a diazepinedione ( 3 ) or fragmentation products depending on the nature of the substituents (R' in formula 1 ).  相似文献   
6.
7.
We investigate using density functional theory (DFT) the electronic structure of (∼3%) Co-doped ZnO in the presence of native n-type donor defects such as VO and ZnI. In particular, we apply a pseudopotential-based self-interaction correction (pseudo-SIC) scheme as an improvement to the local spin-density approximation (LSDA). This overcomes major short comings of the LSDA in describing Co-doped ZnO. Donor+dopant pair complexes such as Co–VO and Co–ZnI are studied as relevant magnetic centres for long-range magnetic interactions at low-dopant concentrations. We find that complex formation is energetically favourable but the inter-complex magnetic coupling is too weak to account for room temperature ferromagnetism in ZnO:Co  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号