首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2651篇
  免费   143篇
  国内免费   14篇
化学   1968篇
晶体学   26篇
力学   67篇
数学   336篇
物理学   411篇
  2023年   24篇
  2022年   33篇
  2021年   63篇
  2020年   53篇
  2019年   66篇
  2018年   65篇
  2017年   33篇
  2016年   115篇
  2015年   94篇
  2014年   94篇
  2013年   193篇
  2012年   220篇
  2011年   217篇
  2010年   113篇
  2009年   106篇
  2008年   166篇
  2007年   179篇
  2006年   126篇
  2005年   146篇
  2004年   129篇
  2003年   85篇
  2002年   58篇
  2001年   24篇
  2000年   21篇
  1999年   23篇
  1998年   14篇
  1997年   39篇
  1996年   24篇
  1995年   20篇
  1994年   19篇
  1993年   20篇
  1992年   11篇
  1991年   19篇
  1990年   15篇
  1989年   19篇
  1988年   7篇
  1987年   13篇
  1986年   14篇
  1985年   16篇
  1984年   17篇
  1983年   11篇
  1982年   8篇
  1981年   11篇
  1980年   10篇
  1979年   10篇
  1978年   15篇
  1977年   9篇
  1976年   7篇
  1973年   5篇
  1972年   2篇
排序方式: 共有2808条查询结果,搜索用时 234 毫秒
1.
The coordinatively unsaturated chromium(II)-based Cr3[(Cr4Cl)3(BTT)8]2 (Cr−BTT; BTT3−=1,3,5-benzenetristetrazolate) metal–organic framework (MOF) has been shown to exhibit exceptional selectivity towards adsorption of O2 over N2/H2. Using periodic density functional theory (DFT) calculations, we attempted to decipher the origin of this puzzling selectivity. By computing and analyzing the magnetic exchange coupling, binding energies, the partial density of states (pDOS), and adsorption isotherms for the pristine and gas-bound MOFs [(Cr4(X)4Cl)3(BTT)8]3− (X=O2, N2, and H2), we unequivocally established the role of spin states and spin coupling in controlling the gas selectivity. The computed geometries and gas adsorption isotherms are consistent with the earlier experiments. The binding of O2 to the MOF follows an electron-transfer mechanism resulting in a CrIII superoxo species (O2.−) with a very strong antiferromagnetic coupling between the two centers, whereas N2/H2 are found to weakly interact with the metal center and hence only slightly perturb the associated coupling constants. Although the gas-bound and unbound MOFs have an S=0 ground state (GS), the nature of spin the configurations and the associated magnetic exchanges are dramatically different. The binding energy and the number of oxygen molecules that can favorably bind to the Cr center were found to vary with respect to the spin state, with a significant energy margin (47.6 kJ mol−1). This study offers a hitherto unknown strategy of using spin state/spin couplings to control gas adsorption selectivity in MOFs.  相似文献   
2.
3.
A study, involving kinetic measurements on the stopped‐flow and conventional UV/Vis timescales, ESI‐MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3S4(acac)3(py)3][PF6] ([ 1 ]PF6; acac=acetylacetonate, py=pyridine) with two RC?CR alkynes (R=CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(μ‐S)2 moiety of [ 1 ]+. The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition‐state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron‐withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.  相似文献   
4.
5.
The syntheses of novel amphiphilic 5,5′,6,6′-tetrachlorobenzimidacarbocyanine (TBC) dye derivatives with aminopropanediol head groups, which only differ in stereochemistry (chiral enantiomers, meso form and conformer), are reported. For the achiral meso form, a new synthetic route towards asymmetric cyanine dyes was established. All compounds form J aggregates in water, the optical properties of which were characterised by means of spectroscopic methods. The supramolecular structure of the aggregates is investigated by means of cryo-transmission electron microscopy, cryo-electron tomography and AFM, revealing extended sheet-like aggregates for chiral enantiomers and nanotubes for the mesomer, respectively, whereas the conformer forms predominately needle-like crystals. The experiments demonstrate that the aggregation behaviour of compounds can be controlled solely by head group stereochemistry, which in the case of enantiomers enables the formation of extended hydrogen-bond chains by the hydroxyl functionalities. In case of the achiral meso form, however, such chains turned out to be sterically excluded.  相似文献   
6.
Transition Metal Chemistry - The present study reports the synthesis and crystal structures of Cu(II) complexes with pyridoxal S-allyldithiocarbazate (H2L1) and pyridoxal thiosemicarbazones...  相似文献   
7.
The increasing availability of real-space interaction energies between quantum atoms or fragments that provide a chemically intuitive decomposition of intrinsic bond energies into electrostatic and covalent terms [see, for instance, Chem. Eur. J. 2018 , 24, 9101] provides evidence for differences between the physicist's concept of interaction and the chemist's concept of a bond. Herein, it is argued that, for the former, all types of interactions are treated equally, whereas, for the latter, only the covalent short-range interactions have actually been used to build intuition about chemical graphs and chemical bonds. This has led to the bonding role of long-range Coulombic terms in molecular chemistry being overlooked. Simultaneously, blind consideration of electrostatic terms in chemical bonding parlance may lead to confusion. The relationship between these concepts is examined herein, and some notes of caution on how to merge them are proposed.  相似文献   
8.
The batch emulsion copolymerization of vinyl acetate with different vinyl silane functional monomers (vinyl trimethoxysilane [VTMS], vinyl triethoxysilane [VTES], and vinyl silanetriol [VSTO]) is studied. The nature of the silane strongly affects the development of the microstructure and crosslinking ability of the latexes. A combination of techniques (Soxhlet extraction, centrifugation, assymetric‐flow field flow fractionation AF4/MALS/RI) shows that the factor controlling the molar mass and crosslinking density is the degree of hydrolysis of the alkoxysilane, producing higher molar masses and degrees of crosslinking when the degree of hydrolysis is high. Thus, the copolymer containing VSTO produced a very crosslinked latex, the one with VTMS produced a latex with a low degree of crosslinking in the wet state that can yield high degrees of crosslinking upon drying, and the latex with VTES do not produce significant amounts of crosslinking neither before nor after drying.  相似文献   
9.
The first fluorescent probes that are actively channeled into the mitochondrial matrix by a specific mitochondrial membrane transporter in living cells have been developed. The new functional probes (BCT) have a minimalist structural design based on the highly efficient and photostable BODIPY chromophore and carnitine as a biotargeting element. Both units are orthogonally bonded through the common boron atom, thus avoiding the use of complex polyatomic connectors. In contrast to known mitochondria-specific dyes, BCTs selectively label these organelles regardless of their transmembrane potential and in an enantioselective way. The obtained experimental evidence supports carnitine–acylcarnitine translocase (CACT) as the key transporter protein for BCTs, which behave therefore as acylcarnitine biomimetics. This simple structural design can be readily extended to other structurally diverse starting F-BODIPYs to obtain BCTs with varied emission wavelengths along the visible and NIR spectral regions and with multifunctional capabilities. BCTs are the first fluorescent derivatives of carnitine to be used in cell microscopy and stand as promising research tools to explore the role of the carnitine shuttle system in cancer and metabolic diseases. Extension of this approach to other small-molecule mitochondrial transporters is envisaged.

A BODIPY derivative of carnitine enters mitochondria regardless of their membrane potential and in an enantioselective way through a specific mitochondrial membrane transporter in living cells.  相似文献   
10.
The catalytic activity of CeO2 and palladium nanoparticles supported fly ash zeolite (CeO2/Pd@FAZ) for Csp2-Csp2 bond formation was studied. CeO2/Pd@FAZ was characterized by FTIR, XRD, EDAX and TEM studies. In the Suzuki-Miyauracross-coupling reaction, biphenyl derivatives with excellent yields were obtained, and the reaction conditions were optimized. The catalytic activity was explored using a wide variety of diversely substituted aryl bromides and chlorides with aryl boronic acid under optimized reaction conditions. The recyclability of the catalyst was established for three cycles, with the conversion rate from 99 to 40%, which gained the advantage of heterogeneous catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号