首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism of [3+2] Cycloaddition of Alkynes to the [Mo3S4(acac)3(py)3][PF6] Cluster
Authors:Dr Jose Ángel Pino‐Chamorro  Dr Artem L Gushchin  Prof M Jesús Fernández‐Trujillo  Dr Rita Hernández‐Molina  Dr Cristian Vicent  Dr Andrés G Algarra  Prof Manuel G Basallote
Institution:1. Departmento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas, Universidad de Cádiz, Avda. República Saharahui s/n, 11510 Puerto Real (Spain), Fax: (+34)?956‐016‐288;2. Nikolaev Institute of Inorganic Chemistry, Russian Academy of Sciences, Novosibirsk State University, 630090 Novosibirsk (Russia);3. Departmento de Química Inorgánica, Instituto Universitario de Bio‐Orgánica “Antonio González”, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain);4. Serveis Central d'Instrumentació Científica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón de la Plana (Spain);5. Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden)
Abstract:A study, involving kinetic measurements on the stopped‐flow and conventional UV/Vis timescales, ESI‐MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of Mo3S4(acac)3(py)3]PF6] ( 1 ]PF6; acac=acetylacetonate, py=pyridine) with two RC?CR alkynes (R=CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic 3+2] cycloaddition reactions, in this case through the interaction with one Mo(μ‐S)2 moiety of 1 ]+. The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the 3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition‐state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron‐withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.
Keywords:activation strain model  C  S bond formation  density functional calculations  kinetics  reaction mechanisms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号