首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
化学   68篇
晶体学   2篇
数学   1篇
物理学   17篇
  2023年   2篇
  2021年   3篇
  2019年   7篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   12篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
  1980年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
Heterocyclic fused-ring systems are of utmost importance because of their presence in many natural products with biological activity. Pyrroloindoles are tricyclic heterocycles that are present in various bioactive and medicinally valuable compounds. Herein, we report the synthesis of phenylene-bridged bis-pyrrolo[1,2-a]indole crowned macrocycles 1 – 3 in which the pyrrolo[1,2-a]indole moieties were formed via intramolecular fusion. The macrocycles were thoroughly characterized by 1D and 2D NMR, HRMS and X-ray crystallographic studies. The X-ray structure revealed that the two pyrrolo[1,2-a]indole moieties were parallel to each other, and one pyrrolo[1,2-a]indole unit was deviated by an angle of 9.54° while the other pyrrolo[1,2-a]indole unit was deviated by an angle of 12.0° from the mean plane defined by 28 core atoms. The macrocycles 1 – 3 absorb in the visible region and readily undergo oxidations because of their electron rich nature. The macrocycles 1 – 3 upon treatment with trifluoroacetic acid (TFA) generates the corresponding cation radicals 1 – 3 .+ which were stable in the open air for a week. The cation radicals 1 – 3 .+ absorb strongly in the NIR region and the experimental observations on crowned macrocycles 1 – 3 were corroborated by DFT and TD-DFT studies.  相似文献   
2.
This review paper covers the low temperature wet growth of nano-engineered particles of ZnO-based mixed metal oxides, their growth mechanism, and characterization using X-ray diffraction, SEM, TEM and IR, UV–visible, and XPS spectral techniques. Main focus of this article is centered on low temperature semi-wet methods of synthesis that are suitable for large scale production of zinc oxide-based systems mixed with iron oxide, copper oxide, nickel oxide and cobalt oxide. These mixed metal oxides have broad industrial applications as catalyst, semiconductors, adsorbents, superconductors, electro-ceramics, and antifungal agents in addition to extensive applications in medicines. This paper discusses the low-cost and environment friendly synthesis of these mixed metal oxides, measurement of properties and applicability of these materials systems.  相似文献   
3.
Nitroso compounds are versatile reagents in synthetic organic chemistry. Herein, we disclose a feasible protocol for the ipso-nitrosation of aryl boronic acids using chlorotrimethylsilane–sodium nitrite unison as nitrosation reagent system.  相似文献   
4.
Measurement of test article concentration in tissue samples has been an important part of pharmacokinetic study and has helped to co‐relate pharmacokinetic/pharmacodynamic relationships since the 1950s. Bioanalysis of tissue samples using LC–MS/MS comes with unique challenges in terms of sample handling and inconsistent analyte response owing to nonvolatile matrix components. Matrix effect is a phenomenon where the target analyte response is either suppressed or enhanced in the presence of matrix components. Based on previous reports electrospray ionization (ESI) mode of ionization is believed to be more affected by matrix components than atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization. To explore the impact of ionization source with respect to bioanalysis of tissue samples, five structurally diverse compounds – atenolol, verapamil, diclofenac, propranolol and flufenamic acid – were selected. Quality control standards were spiked into 10 different biological matrices like whole blood, liver, heart, brain, spleen, kidney, skeletal muscle, eye and skin tissue and were quantified against calibration standards prepared in rat plasma. Quantitative bioanalysis was performed utilizing both APCI and ESI mode and results were compared. Quality control standards when analyzed with APCI mode were found to be more consistent in terms of accuracy and precision as compared with ESI mode. Additionally, for some instances, up to 20‐fold broader dynamic linearity range was observed with APCI mode as compared with ESI mode. As phospholid interferences have poor response in APCI mode, protein precipitation extraction technique can be used for multimatrix quantitation, which is more amenable to automation. The approach of multiple biological matrix quantitation against a single calibration curve helps bioanalysts to reduce turnaround time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
Effect of doping at Ti4+ site by Ce3+ has been examined in CaCu3Ti3.90Ce0.10O12 synthesized by citrate-gel route. DTA/TG analysis of dry powder gives pre-information about formation of final product around 850 °C. X ray diffraction analysis confirmed the formation of CaCu3Ti3.90Ce0.10O12 phase of the ceramic sintered at 950 °C for 12 h. Microstructure has been studied using scanning electron microscopy and confirmed the average grain size found in nano range 200–400 nm in system CaCu3Ti3.90Ce0.10O12.The nature of relaxation behavior of ceramic was also rationalized by using the impedance and modulus spectroscopy. The bulk conductivity indicates an Arrhenius-type thermally activated process. The ac conductivity spectrum obeyed the Jonscher power law. The complex impedance diagrams of the ceramic exhibited a significant contribution from the grains, grain boundaries and electrode. The activation energies calculated from the grain-boundary relaxation time constant was found to be 0.49 eV which confirmed the Maxwell–Wagner type of relaxation present in the ceramic.  相似文献   
6.
7.
A selective and sensitive high-performance liquid chromatography method with UV detection for the determination of metronidazole in dried blood spots (DBS) has been developed and validated. DBS samples [spiked or patient samples] were prepared by applying blood (30 µL) to Guthrie cards. Discs (6 mm diameter) were punched from the cards and extracted using water containing the internal standard, tinidazole. The extracted sample was chromatographed without further treatment using a reversed phase system involving a Symmetry® C18 (5 µm, 3.9?×?150 mm) preceded by a Symmetry® guard column of matching chemistry and a detection wavelength of 317 nm. The mobile phase comprised acetonitrile/0.01?M phosphate solution (KH2PO4), pH 4.7, 15:85, v/v, with a flow rate of 1 mL/min. The calibration was linear over the range 2.5–50 mg/mL. The limits of detection and quantification were 0.6 and 1.8 µg/mL, respectively. The method has been applied to the determination of 203 DBS samples from neonatal patients for a phamacokinetic/pharmacodynamic study.  相似文献   
8.
Traditional anodic stripping voltammetry (ASV) involves electrodeposition (reduction) of metal ions from solution over some time scale onto a working electrode followed by stripping (oxidation) of the deposited metal in a second step, where the stripping potential and quantity of charge passed provide information about the metal identity and solution concentration, respectively. ASV has recently been extended to the analysis of metal nanoparticles (NPs), which have grown popular because of their fascinating properties tunable by size, shape, and composition. There is a need for improved methods of NP analysis, and because metal NPs can be oxidized to metal ions, ASV is a logical choice. Early studies involved metal NPs as tags for the detection of biomolecules. More recently, anodic stripping has been used to directly analyze the physical, chemical, and structural properties of metal NPs. This review highlights the stripping analysis of NP assemblies on macroelectrodes, individual NPs in solution during collisions with a microelectrode, and a single NP attached to an electrode. A surprising amount of information can be learned from this very simple, low-cost technique.  相似文献   
9.
Spin-label W-band (94 GHz) electron paramagnetic resonance (EPR) with a five-loop–four-gap resonator (LGR) was successfully applied to study membrane properties (Mainali et al. J Magn Reson 226:35–44, 2013). In that study, samples were equilibrated with the selected gas mixture outside the resonator in a sample volume ~100 times larger than the sensitive volume of the LGR and transferred to the resonator in a quartz capillary. A seven-loop–six-gap W-band resonator has been developed. This resonator permits measurements on aqueous samples of 150 nL volume positioned in a polytetrafluoroethylene (PTFE) gas permeable sample tube. Samples can be promptly deoxygenated or equilibrated with an air/nitrogen mixture inside the resonator, which is significant in saturation-recovery measurements and in spin-label oximetry. This approach was tested for lens lipid membranes derived from lipids extracted from two porcine lenses (single donor). Profiles of membrane fluidity and the oxygen transport parameter were obtained from saturation-recovery EPR using phospholipid analog spin-labels. Cholesterol analog spin-labels allowed discrimination of the cholesterol bilayer domain and acquisition of oxygen transport parameter profiles across this domain. Results were compared with those obtained previously for membranes derived from a pool of 100 lenses. Results demonstrate that EPR at W-band can be successfully used to study aqueous biological samples of small volume under controlled oxygen concentration.  相似文献   
10.
The absolute electronic energy levels in Hg‐doped CdTe semiconductor nanocrystals (CdHgTe NCs) with varying sizes/volumes and Hg contents are determined by using cyclic voltammetry (CV) measurements and density functional theory (DFT) ‐based calculations. The electrochemical measurements demonstrate several distinct characteristic features in the form of oxidation and reduction peaks in the voltammograms, where the peak positions are dependent on the volume of CdHgTe NCs as well as on their composition. The estimated absolute electronic energy levels for three different volumes, namely 22, 119 and 187 nm3 with 2.7±0.3 % of Hg content, show strong volume dependence. The volume‐dependent shift in the characteristic reduction and oxidation peak potential scan can be attributed to the alteration in the energetic band positions owing to the quantum confinement effect. Moreover, the composition (Cd/Hg=98.3/1.7 and 97.0/3.0) ‐dependent alteration in the electronic energy levels of CdHgTe NCs for two different samples with similar volumes (ca. 124±5 nm3) are shown. Thus obtained electronic energy level values of CdHgTe NCs as a function of volume and composition demonstrate good congruence with the corresponding absorption and emission spectral data, as well as with DFT‐based calculations. DFT calculations reveal that incorporation of Hg into CdTe NCs mostly affects the energy levels of conduction band edge, whereas the valence band edge remains almost unaltered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号