首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Electrochemical processes, which underlie the use of conductive diamond electrodes for the simultaneous detection of two or more metal ions in solution by anodic stripping voltammetry (ASV), have been investigated. The model analyte system studied contains the two metal species, Ag+(aq) and Pb2+(aq), and the experimental techniques employed include cyclic and square wave voltammetries, along with X-ray photoelectron spectroscopy and secondary electron microscopy. Although the bulk metallic forms of Ag and Pb are immiscible, several interactions in the system between the two metal species present are observed, which significantly influence the electrodeposition and electrodissolution processes which underlie ASV. The subsequent nucleation and growth of a given metal on the electrode surface is enhanced by the presence of the second metal on the surface. The encapsulation of one metal by the other, within the metal particulates that form on the electrode surface, significantly reduces the stripping yield at the potentials characteristic of the individual metals. The stripping potentials are also influenced by bonding interactions between deposited Ag and Pb, which broaden the characteristic stripping peaks in cyclic voltammetry, as well as producing underpotential deposition and stripping. Given these interactions, the extent to which ASV at diamond electrodes can be used to determine the solution concentrations of Ag+(aq) and Pb2+(aq) is considered.  相似文献   

2.
Capabilities for heavy metal speciation of anodic stripping voltammetry (ASV) and constant-current stripping chronopotentiometry (SCP) in both mercury drop (HMDE) and mercury film rotating disk (MFE-RDE) electrodes are compared. For this purpose, the Cd(II)–glycine and Cd(II)–polymethacrylate (PMA) systems are used as models of simple labile and macromolecular labile complexes adsorbing onto the electrode, respectively. The results suggest that SCP could be a valuable alternative to the more widespread ASV in this kind of study. Concerning the electrode, the MFE-RDE is less user-friendly than the HMDE, but presents a better definition of both the hydrodynamic conditions during the deposition step and the stripping regime during the oxidation. An important interference in SCP is the dissolved oxygen, which can be minimised by combining relatively large oxidation currents and low stirring rates. Moreover, for Cd–PMA, double peaks have been observed in both ASV and SCP, which seems to be due to the lack of enough ligand excess to complex the metal ions released by the amalgam oxidation. Anyway, this problem can be minimised by optimising the rotation rate of the electrode and ensuring enough ligand excess.  相似文献   

3.
《Electroanalysis》2017,29(2):609-615
In this work a method for sensitive anodic stripping voltammetric determination of Pb(II) ions using a poly xylenol orange film modified electrode (PXOFME) has been proposed. Poly xylenol orange film (PXOF) was formed on a paraffin impegrenated graphite electrode (PIGE) using electro polymerization method by scanning the potential between −0.5 V to 1.3 V, at a scan rate of 50 mV/s for 30 segments in 0.1 M phosphate buffer solution (PBS) of pH 7. The PXOFME was characterized by scanning electron microscopy (SEM), ATR‐IR spectroscopy, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The modified electrode has been used to develop a sensitive method for the determination of Pb(II) ions by anodic stripping voltmmetry (ASV). The PXOFME was used to preconcentrate Pb(II) ions through complexation, the complexed metal ions were reduced electrochemically and then stripped anodically from the surface of the electrode. A linear range of 5 μg/L to 413 μg/L with a limit of detection (S/N=3) of 1.6 μg/L was observed for the determination of Pb(II) ions. The method was applied to lead determination in sea water and tap water samples and the results were found to be satisfactory.  相似文献   

4.
《Electroanalysis》2005,17(7):549-555
Carbon film disk electrodes with Nafion coatings have been characterized by electrochemical impedance spectroscopy (EIS) with a view to a better understanding of their advantages and limitations in electroanalysis, particularly in anodic stripping voltammetry of metal ions. After initial examination by cyclic voltammetry, spectra were recorded over the full potential range in acetate buffer solution at the bare electrodes, electrodes electrochemically pretreated in acid solution, and Nafion‐coated pretreated electrodes in the presence and absence of dissolved oxygen. EIS equivalent circuit analysis clearly demonstrated the changes between these electrode assemblies. In order to simulate anodic stripping voltammetry conditions, spectra were also obtained in the presence of cadmium and lead ions in solution at Nafion‐coated electrodes, both after metal ion deposition and following re‐oxidation. Permanent changes to the structure of the Nafion film occurred, which has implications for use of these electrode assemblies in anodic stripping voltammetry at relatively high trace metal ion concentrations.  相似文献   

5.
报道了利用辛可宁修饰碳糊电极测定铋的方法,在1mol/LH2SO4溶液中,通过在-1.00V电位下富集Bi3+后,在-0.20~+0.15V电位范围内作阳极溶出伏安法测定。在-0.022V处有一灵敏的氧化峰,峰电流与Bi  相似文献   

6.
The use of anodic stripping voltammetry (ASV) to determine the labile metal fraction in metal/ fulvic acid equilibrium systems is discussed. A method is described for distinguishing between the contributions of processes in the reduction and oxidation steps to the observed anodic (stripping) current. This method, which facilitates separate examination of the two processes, is based on timed addition of fulvic acids during the deposition step, on pH control, and on measurement of sampled-d.c. ASV peak areas (Faradaic charge) for metal/fulvic acid solutions. Results are presented for copper(Il) and lead(Il) complexes with six colloid-free soil-derived fulvic acids. In contrast to differential-pulse ASV, the stripping current measured by sampled-d.c. ASV showed no measurable contribution from ligand adsorption on the mercury drop. For heterogeneous ligand systems, such as fulvic acid, use of stripping peak heights over-estimates the fraction of non-labile metal complex because peak broadening results from the range of complexes formed in the anodic step.  相似文献   

7.
Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 mol L?1 NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi3+ and Pb2+ ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury‐coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5 % RSD) were obtained.  相似文献   

8.
Komárek J  Stavinoha P  Gomiscek S  Sommer L 《Talanta》1996,43(8):1321-1326
The electrodeposition of copper on a graphite electrode at a constant potential with subsequent atomization in the graphite atomizer HGA-400 has been studied. A special graphite disk electrode is suitable for electrochemical enrichment at E = -0.7 V vs. SCE and the determination of copper by electrothermal-atomic absorption spectrometry (ET-AAS) if atomized at 2300 degrees C. In this way copper was determined in potable water and free Cu(2+) could be distinguished from that bound in chelate speciations after using a suitable deposition potential of the working electrode. This approach seems to be an alternative to the commonly used anodic stripping voltammetry (ASV) for the preconcentration and determination of free metal ions.  相似文献   

9.
《Electroanalysis》2017,29(12):2685-2688
Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn in alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH)4 and Zn(OH)42−. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of≤−1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r‐squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. These results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.  相似文献   

10.
Anodic stripping voltammetry (ASV) is an extremely powerful tool for detection of metal ions in solution through a two step process of preconcentration of the metal at the electrode surface, followed by electrodissolution. The second phase produces an electroanalytical response proportional to the amount of material deposited in the first phase. This paper utilizes theory to explore the electrochemical signals produced when considering ASV at a microelectrode or ultramicroelectrode arrays. The theory outlined is applicable mostly to thin mercury film absorption and metal adsorption.  相似文献   

11.
The behavior of a modified carbon paste electrode (CPE) for simultaneous determination of copper(II) and silver(I) by anodic adsorptive stripping voltammetry (ASV) was studied. The electrode was built incorporating the bis(2‐hydroxyacetophenone) butane‐2,3‐dihydrazone (BHAB) as a complexing agent to a Nujol‐graphite base paste. The resulting electrode demonstrated linear responses over the range of Cu(II) and Ag(I) concentrations 0.1–20 and 0.01–2.0 µM respectively. The relative standard deviation (RSD) for the determination of 5.0 µM of both metal ions were 2.9 and 3.1 % for Cu(II) and Ag(I), respectively. The method has been applied to the analysis of copper in wheat and barley seed samples and silver in developed radiological film.  相似文献   

12.
提出了一种基于胶体金标记的阳极溶出伏安免疫分析方法。免疫反应在聚苯乙烯微孔板中以夹心分析模式进行,通过物理吸附将兔抗人免疫球蛋白G(IgG)抗体固定于微孔板上,与相应抗原IgG发生免疫反应后,再通过夹心模式捕获相应的纳米金标记的羊抗人IgG抗体,然后再与金标羊抗人IgG抗体和金标兔抗羊二抗形成的免疫复合物反应,在微孔板上进一步引入大量的纳米金,将金溶解后,在碳糊电极上用阳极溶出伏安法(ASV)对金离子进行检测,溶出峰电流的大小间接与待分析物IgG的浓度成正比。对免疫分析的一些实验条件进行了优化。阳极溶出峰电流与IgG的对数浓度在1.1~1 143 ng/mL范围内呈良好的线性关系,检出限为1 ng/mL。将该方法应用于人血清中IgG浓度的测定,取得了满意结果。  相似文献   

13.
The possibilities of anodic stripping voltammetry (ASV) using an alternating current (AC) scan in the stripping step have been checked through the study of the complexation of cadmium by Suwannee river fulvic acid (SRFA), a reference fulvic acid from the International Humic Substances Society. Because of the strong electrode adsorption of SRFA, AC mode appears to be a good approach to the study when proper selection of the phase angle is made. The goodness of AC mode in ASV has been demonstrated, and the complexation constant of 3.71 ± 0.04 determined is in good agreement with the value of the constant obtained by the reference technique of reverse pulse polarography. Some particularities of SRFA have been observed, among them its homofunctional and strongly heterogeneous behaviour in cadmium complexation and the impossibility of avoiding electrode adsorption problems in ASV measurements at very low metal concentrations. Figure DP anodic stripping and AC anodic stripping voltammograms at −12° and −65° during the titration of a 10−7 mol L−1 Cd(II) solution with SRFA at pH 7.5 in 0.05 L−1 Tris Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
《Electroanalysis》2004,16(5):345-354
The use of anodic stripping voltammetry for quantitative analytical measurements using solid electrodes is addressed in the light of generic limitations arising from i) electrode heterogeneity, ii) electrode morphology, iii) inhibited electrodeposition, and iv) incomplete stripping of deposited metal in the anodic sweep. It is shown, using direct imaging of electrode surfaces via AFM and optical microscopy, that each of the preceding factors may produce significant deviations from ideal electrode behavior. The use of atomic force microscopy to fully characterize any developed ASV procedures is strongly recommended. To ensure reproducible and accurate stripping voltammetry, steps should be taken to minimize the effects discussed.  相似文献   

15.
This work reports on the fabrication, characterization and applications of Nafion-coated bismuth-film electrodes (NCBFE's) for the determination of trace metals by anodic stripping voltammetry (ASV). A NCBFE was typically prepared by first applying a 5 microl drop of a 1% Nafion solution onto the surface of a glassy-carbon rotating-disk electrode. After evaporation of the solvent, the Bi film was plated on the electrode in situ(i.e. by spiking the sample with 1000 microg l(-1) of Bi(iii) and simultaneous electrolytic deposition of the metal ions and bismuth film on the electrode surface at -1.4 V) or ex-situ(i.e. by electrolytic deposition of the bismuth film in a separate solution containing 1000 microg l(-1) of Bi(iii), followed by the ASV measurement step in the sample solution). Various fabrication and operational parameters were thoroughly investigated and discussed in terms of their effect on the ASV signals. It was found that this voltammetric sensor was suitable for the determination of metals at trace levels by square-wave ASV (SWASV) due to its multi-element detection potential, improved analytical sensitivity, high resistance to surfactants, low cost, ease of fabrication, robustness, speed of analysis and low toxicity (as compared to traditional mercury electrodes). In the presence of 4 mg l(-1) of Triton X-100, the NCBFE afforded a 10-fold peak height enhancement for the Pb peak and a 14-fold enhancement for the Cd peak over a bare BFE while the determination of Zn was feasible only on the NCBFE. The limits of detection (at a signal-to-noise ratio of 3) were 0.1 microg l(-1) for Cd and Pb and 0.4 microg l(-1) for Zn for a deposition time of 10 min. Finally, the electrode was applied to different real samples (tap-water, urine and wine) for the analysis of trace metals with satisfactory results.  相似文献   

16.
A novel strategy for the automation of trace lead (Pb2+) and cadmium (Cd2+) anodic stripping voltammetry (ASV) is described. This was achieved using an electrode assembly comprising a small standard reference electrode, a Pt wire counter electrode, and an in situ bismuth-plated pencil lead working electrode for ASV in a robotic device adapted for measurements in a 24-well microtiter plate format. The movement of the electrode assembly through individual wells was by computer-controlled micropositioning, and each microtiter plate run included a sequence of electrode pretreatment, water rinsing, and simultaneous Pb2+ and Cd2+ ASV measurements. Analyte concentrations down to 2 μg/L (Pb2+) and 20 μg/L (Cd2+) could be measured in drinking and tap water, a wastewater reference material and a soil sample, with an accuracy and standard deviation typical of stripping analysis. This robotic electrochemical strategy offers automated trace metal analysis with simple instrumentation and is suggested as an option for routine use in analytical laboratories such as those providing environmental heavy metal testing services.  相似文献   

17.
New insights into the functioning, i.e. electrochemical behaviour and analytical performance, of in situ prepared antimony film electrodes (SbFEs) under square-wave anodic stripping (SW-ASV) and cyclic (CV) voltammetry conditions are presented by studying several key operational parameters using Pb(II), Cd(II) and Zn(II) as model analyte ions. Five different carbon- and metal-based substrate transducer electrodes revealed a clear advantage of the former ones while the concentration of the precursor Sb(III) ion exhibited a distinct influence on the ASV functioning of the SbFE. Among six acids examined as potential supporting electrolytes the HNO3 was demonstrated to yield nearly identical results in conducting ASV experiments with SbFE as so far almost exclusively used HCl. This is extremely important as HNO3 is commonly employed acidifying agent in trace metal analysis, especially in elemental mass spectrometry measurements. By carrying out a systematic CV and ASV investigation using a medium exchange protocol, we confirmed the formation of poorly soluble oxidized Sb species at the substrate electrode surface at the end of each stripping step, i.e. at the potentials beyond the anodic dissolution of the antimony film. Hence, the significance of the cleaning and initializing the surface of a substrate electrode after accomplishing a stripping step was thoroughly studied in order to find conditions for a complete removal of the adhered Sb-oxides and thus to assure a memory-free functioning of the in situ prepared SbFE. Finally, the practical analytical application of the proposed ASV method was successfully tested and evaluated by measuring the three metal analytes in ground (tap) and surface (river) water samples acidified with HNO3. Our results approved the appropriateness of the SbFE and the proposed method for measuring low μg L−1 levels of some toxic metals, particularly taking into account the possibility of on-field testing and the use of low cost instrumentation.  相似文献   

18.
Ensafi AA  Nazari Z  Fritsch I 《The Analyst》2012,137(2):424-431
Differential pulse anodic stripping voltammetry (DPASV) coupled with redox-magnetohydrodynamics (MHD) is used to enhance the anodic stripping voltammetry (ASV) response using a mercury thin film-glassy carbon electrode. The sensitivity increased to at least a factor of two (at 1.2 T) and is facilitated by using 20.0 mmol L(-1) 1,4-benzoquinone as an alternative pumping species to enhance ASV by redox-MHD. The MHD force formed by the cross-product of ion flux with magnetic field induces solution convection during the deposition step, enhancing mass transport of the analytes to the electrode surface and increasing their preconcentrated quantity in the mercury thin film. Therefore, larger ASV peaks and improved sensitivities are obtained, compared with analyses performed without a magnet. The influence of pH, 1,4-benzoquinone concentration, accumulation potential, and time are also investigated. Detection limits of 0.05, 0.09 and 2.2 ng mL(-1) Cd(II), Pb(II) and Zn(II) were established with an accumulation time of 65 s. The method is used for the analysis of Cd(II), Pb(II) and Zn(II) in different water samples, certified reference materials, and saliva samples with satisfactory results.  相似文献   

19.
An antimony film electrode (SbFE) was prepared in situ on a glassy carbon support and in a new supporting electrolyte, a saturated solution of hydrogen potassium tartrate in which Sb(III) ions were complexed using tartrate. Its performance in anodic stripping voltammetric (ASV) determination of Cd(II), Pb(II), Zn(II), Tl(I), In(III) and Cu(II) traces was examined. It was found that 1.2 mg/L of Sb(III) yields the finest quality SbFE for analytical purposes. The procedure with in situ SbFE ensures well‐defined anodic stripping voltammetric curves of the investigated elements, low detection limits (0.5–3.8 µg/L), good reproducibility (1–5 %) and satisfactory sensitivity (32–184 nA/(µg/L)).  相似文献   

20.
A directly heated mercury film electrode (MFE) extends the operational capabilities of the hot layer technique to a wide range of electroanalytical systems. Wires or layers of gold and platinum have been used as sensors so far, but they were suitable only for the analysis of a small number of metals. The development of a heated MFE is described, including electrode construction and mercury deposition procedures. The thermal properties of the sensor were investigated. As a first application, cadmium was determined by anodic stripping voltammetry (ASV) with the result of an improved signal-to-background ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号