首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Absorption, fluorescence emission and excitation spectra of benzothiazole cyanine dyes--thiazole orange (TO) and 7-methyl-6-(3-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidenmethyl) [1,3] dioxolo [4',5':4,5] benzo [d] [1,3] thiazolium methylmethosulfate (Cyan 13)--were investigated over a wide concentration range. The dyes form aggregates with a 'sandwich'-like structure in water solution. At low dye to DNA concentrations ratios, Cyan 13 and TO monomers appear to interact with the DNA. On increasing the dye to DNA concentrations ratio, free dye molecules aggregate with the DNA-bound ones. The spectra of the free dye aggregates and the aggregates formed on the DNA, are characterized by an anomalously large (more than 100 nm) Stokes shift. This suggests, that the pi-electron systems of the aggregates undergo substantial changes in excited state, compared to those of the monomers. The formation of aggregates consisting of the free and DNA-bound dye molecules can be explained using the half-intercalation model of the interaction of the cyanine dye monomers with the DNA.  相似文献   

2.
Spectral properties of newly synthesized cyanine dyes, namely 1-[6-(4-[6-[2,6-dimethyl-4-(3-methyl-2,3-dihydro-1,3-benzothiazol- 2-ylidenmethyl)-1-pyridiniumyl]hexanoyl]piperazino)-6- oxohexyl]-2,6-dimethyl-4-(3-ethyl-2,3-dihydro-1,3-benzothiazol+ ++-2-ylidenmethyl)pyridinium (K-6) (bichromophoric dye) and 1-[5-di(3-[5-[2,6-dimethyl-4-(3-methyl-2,3-dihydro-1,3-benzothiazol++ +-2-ylidenmethyl)-1-pyridiniumyl]pentylcarboxamido]pro pyl) carbamoylpentyl]-2,6-dimethyl-4-(3-methyl-2,3-dihydro-1,3-benzo thiazol-2-ylidenmethyl) pyridinium (K-T) (trichromophoric dye) in solutions in the presence of and without deoxyribonucleic acid (DNA) were studied within a wide concentration range. It has been established that absorption, as well as fluorescence of investigated dye solutions, without DNA are mainly determined by H-aggregates of dye molecules. On the contrary, the fluorescence of dye solutions in the presence of DNA gives an intrinsic dye molecular fluorescence. H-aggregates are broken because of binding dye molecules with DNA. It has been suggested that both K-T and K-6 molecules bind mainly with DNA via the interaction of two chromophores. As the ratio of the number of dye molecules to that of DNA base pairs increases with an increase in dye concentration, a formation of dye molecule H-aggregates on DNA molecules are observed. Such aggregates have a different structure than those formed in the solutions without DNA. On the grounds of the data obtained, it is concluded that it is possible to use a dye aggregation capable of obtaining higher values for fluorescence enhancement of the DNA stains.  相似文献   

3.
J-aggregates of a diacid form (H4TPPS2-) of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4-) were stabilized by binding with ferric myoglobin (metMb) in aqueous solution at neutral pH. The J-aggregates gradually dissociated to monomeric H2TPPS(4-). The average half-lifetime (t1/2) of the J-aggregates in the presence of sufficient amounts of metMb was ca. 3 h in phosphate buffer at pH 7.0 and 25 degrees C. The stabilization of the J-aggregate by metMb is ascribed to encapsulation and fixation of an edge-to-edge structure of the J-aggregate by the relatively rigid protein molecules. The secondary structure of metMb was altered in some extent in the presence of an excess amount of the J-aggregates while no effect on denaturation of metMb was observed with the H2TPPS(4-) monomer or polyacrylate. The hydrophobic nature of the J-aggregate seems to play an important role for denaturation of metMb. The ability of denatured metMb to bind the azide anion was higher than that of natural metMb. The denaturation of metMb by the J-aggregates seems to induce surfacing of hemin leading to an entropy gain in coordination of the N3(-) anion to the iron(III) center.  相似文献   

4.
By use of electrostatic interactions of dye molecules and poly(diallyldimethylammonium chloride) (PDDA), the spin-coating technique has been successfully applied to the preparation of stable J-aggregate thin films of thiacarbocyanine dyes on a polycarbonate or quartz plate. The J-aggregate thin films were prepared by the spin-coating of PDDA aqueous solution on dye thin films prepared on a substrate by the spin-coating of 2,2,3,3-tetrafluoro-1-propanol solution of dyes. Photophysical properties of the dye thin films and J-aggregate thin films were studied by measuring the fluorescence spectra, quantum yields, and lifetimes. Coherent size of the J-aggregates was estimated to be 3-12 by means of the absorption bandwidth (full width at half maximum) or radiative lifetime. Photostability of the J-aggregate thin films was also studied in terms of photodegradation efficiency under argon and oxygen in comparison with the dye thin films, and J-aggregate thin films were found to be more stable than the corresponding dye thin films.  相似文献   

5.
The interaction between double-stranded (ds) DNA and the cyanine dye Cyan 2 has been studied with spectral luminescence methods. Binding constant values have been determined by fluorescence titration and dye distribution in the two-phase system ethyl acetate-water (3.6 x 10(4) and 1.5 x 10(4) M(-1), respectively). Cyan 2 exhibits a small specificity for guanine-cytosine (GC) sequences in total DNA and synthetic polydeoxynucleotides poly(dA/dT) and poly(dGdC/dGdC). The DNA complexes with Cyan 2 are stable at high-ionic strength solution when NaCl is added. The dye molecule complexed with DNA is apparently shielded from the anionic quencher--iodide ion. The negative linear dichroism of the visible absorption band of aligned Cyan 2-DNA complexes indicates that the bound dye lies almost perpendicularly to the DNA helix axis. The linear dichroism of the absorption band at 260 nm suggests a considerable change in the DNA B-form. The results are consistent with an intercalative binding interaction between Cyan 2 and ds DNA.  相似文献   

6.
The effects of NaCl on the aggregation of two typical thiacarbocyanine dyes (3,3'-di(3-sulfopropyl)-4,5,4',5'-dibenzo-9-phenyl-thiacarbocyanine triethyl ammonium salt (Dye 1) and 3,3'-di(3-sulfopropyl)-4,5,4',5'-dibenzo-9-methyl-thiacarbocyanine triethyl ammonium salt (Dye 2)) in aqueous solution have been studied by using absorption spectroscopy, fluorescence spectroscopy, and 1H- and 23Na-NMR measurements. It is found that the J-aggregation of two dyes can be promoted by the addition of NaCl and that the effective coherence length of the J-aggregate is shorter than that obtained without NaCl. Fluorescence spectra demonstrate that the fluorescence intensities of the J-aggregates of two dyes are quenched by addition of NaCl. This is consistent with the decrease of the effective coherence length of J-aggregates of the two dyes in the presence of NaCl. 1H-NMR spectra of two dyes show that the Na(+) ions penetrate into the J-aggregates and replace the counterion (triethylammonium ions) in two dyes. The measurements of the chemical shifts of 23Na nuclei provide further information about the interaction between the Na(+) ions and dye anions in the J-aggregates of the two dyes. Due to this interaction, the electrostatic repulsion between the dye anions in the J-aggregates can be reduced and thus accelerate the aggregation of the two dyes in the presence of NaCl. The apparent association constants between Na(+) ions and dye molecules in J-aggregates of Dye 1 and Dye 2 estimated from the measured chemical shifts of 23Na nuclei are about 2.38 M(-1) and 1.35 M(-1), respectively.  相似文献   

7.
The monolayer assemblies incorporating the J-aggregates of oxacyanine dye, N,N'-dioctadecyloxacyanine perchlorate (S9), and thiacyanine dye, N,N'-dioctadecylthiacyanine perchlorate (S11), S9(J) + S11(J), have been fabricated by the Langmuir-Blodgett (LB) technique. The mole fraction X of S11, X = [S11]/([S9] + [S11]), was varied from 0 to 1. Steady-state absorption spectra, fluorescence spectra, and picosecond fluorescence decay curves of the monolayer assemblies have been measured. Spectroscopic properties of the monolayer assemblies incorporating the individual dye aggregates, S9 J-aggregate (S9(J), X = 0) or S11 J-aggregate (S11(J), X = 1), are characterized by a distinct J-band and resonance fluorescence at lambda(ab) = 403 nm and lambda(em) = 403 nm for S9(J) and lambda(ab) = 456 nm and lambda(em) = 463 nm for S11(J). On the other hand, absorption spectra of the S9(J) + S11(J) assemblies for X = 0.1-0.9 display two absorption bands, a shorter wavelength one and a longer wavelength one, whose peak positions are blue-shifted from those of the corresponding J-bands of the S9 J-aggregate and the S11 J-aggregate, respectively. Furthermore, fluorescence spectra are characterized by a single band (longer wavelength fluorescence) which is somewhat blue-shifted from the resonance fluorescence of the S11 J-aggregate. The fluorescence lifetimes of the S11 J-aggregate and isolated S11 molecules in LB films appear to be tau = 110 and 1900 ps, respectively, while the fluorescence lifetime of the longer wavelength fluorescence of the S9(J) + S11(J) assemblies takes practically a constant value of tau = 170-180 ps for X = 0.2-0.8. These observations would indicate that S9 and S11 molecules in the S9(J) + S11(J) assembly can form a specific mixed aggregate distinct from the individual S9 and S11 J-aggregates. From detailed considerations of the former works on luminescence properties of the S9 J-aggregate doped with isolated S11 molecules, as well as the mosaic-type mixed J-aggregate (M-aggregate) composed of a certain thiacyanine dye, 3,3'-disulfopropyl- 5,5'-dichlorothiacyanine sodium salt, and thiacarbocyanine dye, meso-substituted 3,3'-disulfopropyl-5,5'-dichlorothiacarbocyanine potassium salt, it is suggested that S9 and S11 can form a homogeneous aggregate of the persistence type (HP-aggregate). The HP-aggregate is distinguished from the M-aggregate because it is characterized by homogeneous mixing of two component dyes and persistence of two absorption bands.  相似文献   

8.
Monomethine cyanine dye 4-((1-methylbenzothiazolyliliden-2)methyl)-1,2,6-trimethylpyridinium perchlorate (Cyan 40) was investigated as a two-photon-excited fluorescence probe for nucleic acids (NA). Cyan 40 has been shown to demonstrate efficient two-photon-excited fluorescence in the presence of NA in vitro in contrast to solutions without NA. Two-photon confocal laser scanning microscopy (TPCLSM) and two-photon laser scanning microspectrofluorometry were used to check the possibility of using Cyan 40 as two-photon-excited fluorescence label for NA in living cells. Study of dye effect on viability of cells was also carried out. We ascertained that Cyan 40 is a cell-permeant dye, manifesting efficient two-photon-excited fluorescence when bound to NA in living cells, without any significant influence on viability of cells. TPCLSM images obtained from stained cells indicate preferential RNA staining by Cyan 40 compared with DNA.  相似文献   

9.
We report the preparation of aqueous liposome dispersions of J-aggregates formed by the amphiphilic merocyanine dye (MD). A series of liposome-forming lipids were dispersed together with MD J-aggregates at different molar ratios of MD to lipid. The MD J-aggregate dispersions prepared with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at the MD to DMPC ratio of 0.16 exhibit good dispersibility; that is, they can be readily redispersed without any flocculation even after their precipitation. By use of different counterions for the MD molecules, two types of J-aggregate dispersions, one that exhibits an absorption band (J-band) at 635 nm (type I) and the other at 600 nm (type II), were obtained. As an example of the use of MD J-aggregates liposome dispersions, the thermochromic transformation of MD J-aggregates was demonstrated. When the dispersions are heated, J-aggregates of type I transformed into type II at a certain temperature (T(disp)). The parameters that control the speed of the transformation and the value of T(disp) were determined.  相似文献   

10.
The aim of this work was to investigate the formation of J-aggregates of thiacyanine dye (TC, 5,5′-disulfopropyl-3,3′-dichlorothiacyanine sodium salt) in the presence of 6 nm spherical silver nanoparticles (Ag NPs) using spectrophotometric and fluorescence methods. The formation of J-aggregates was concentration dependent and characterized by the appearance of the new absorption band with the maximum at 481 nm. Spectrophotometric study of J-aggregate formation and time stability suggested that they were formed on the account of monomer form of TC. Moreover, the stability of J-aggregates increased with the lowering AgNPs concentration. The measurements of fluorescence of the NPs—dye assembly clearly indicated that the fluorescence of TC was quenched by Ag NPs on the concentration dependent manner. The spectrophotometric and fluorescence properties of NPs—dye assembly were found to be quantitatively related to the surface coverage of the dye on the Ag NPs.  相似文献   

11.
The kinetics of formation of J-aggregates for 3,3'-bis[sulfopropyl]-R-4',5'-dibenzo-9-ethylthiacarbocyanines (R=5-methoxy; R=4,5-dibenzo) and 3,3'-bis[sulfopropyl]-5,5'-diphenyl-9-ethyloxacarbocyanine were studied in aqueous solution in the presence of gelatin at different pH values and at room and elevated temperatures. Addition of gelatin at concentrations of 0.0005-0.05 wt % to solutions of dyes results in the production of J-aggregates in the tens of seconds to tens of minutes range. The rate of J-aggregate formation increases with increasing concentrations of dye and gelatin, correlates with the rate of decay of dimers, and is also dependent on the dye structure, temperature, and pH. The rate of J-aggregation is increased for and decreased for with an increase in temperature. For and, the rate increases with increasing [H+] and reaches the maximum value at pH 3.3-4.3 for 3. The interaction of with gelatin is considered to be a cooperative binding process, and J-aggregation is characterized by the time-dependent rate constant. Sigmoidal- and nonsigmoidal-type kinetic curves of both formation of J-aggregates and decay of the dimers are best fitted with a stretched exponential function.  相似文献   

12.
The interaction between polyelectrolytes and Acridine Orange (AO) has been investigated in the case of poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), and a polycondensate between 1,3-benzene disulfonyl chloride and L -lysine (PLL) by visible absorption and fluorescence spectroscopy. The influence of both polymer ionization and polymer/dye ratio (P/D) on the spectral behavior of the bound dye has been studied. The stacking tendency of AO is found lower in the presence of PLL under compact conformation (in an ionization range depending on the nature of the counterion) with correlated enhancement of the green fluorescence of the monomeric species of the bound dye. The disappearance of the green fluorescence and the dimerization of bound AO are directly related to the increased flexibility of polyion chains upon ionization. Some analogy is found between the behavior of bound AO in the presence of very compact PLL chains and that reported for AO in the presence of native DNA, which might be due to specific interactions responsible for a kind of “intercalation” of the monomeric bound dye.  相似文献   

13.
Understanding drug-release kinetics is critical for the development of drug-loaded nanoparticles. We developed a J-aggregate-based Förster-resonance energy-transfer (FRET) method to investigate the release of novel high-drug-loading (50 wt %) nanoparticles in comparison with low-drug-loading (0.5 wt %) nanoparticles. Single-dye-loaded nanoparticles form J-aggregates because of the high dye-loading (50 wt %), resulting in a large red-shift (≈110 nm) in the fluorescence spectrum. Dual-dye-loaded nanoparticles with high dye-loading using FRET pairs exhibited not only FRET but also a J-aggregate red-shift (116 nm). Using this J-aggregate-based FRET method, dye-core–polymer-shell nanoparticles showed two release processes intracellularly: the dissolution of the dye aggregates into dye molecules and the release of the dye molecules from the polymer shell. Also, the high-dye-loading nanoparticles (50 wt %) exhibited a slow release kinetics in serum and relatively quick release in cells, demonstrating their great potential in drug delivery.  相似文献   

14.
J-aggregates of indocyanine green sodium iodide in water are formed by heat treatment. Starting from a dimeric solution the activation energy of molecule attachment (Eatt ≈ 0.41 ev) to J-aggregates is determined by analysing the temperature dependence of the rate of J-aggregate absorption growth. The activation energy of molecule detachment (Edet ≈ 0.51 eV) from J-aggregates is deduced from the temperature dependent rate of J-aggregate absorption decrease after strong dilution.  相似文献   

15.
We fabricated a layer-by-layer (LbL) film composed of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and poly(allylamine) (PAA) and investigated its pH response by UV-visible spectrometry. When the (PAA/TPPS)5PAA film was immersed in a pH 1.5 solution, J-aggregate bands were observed at 484 and 691 nm. Above pH 3.0, the J-aggregates were completely dissociated and an H-aggregate band was observed at 405 nm. The interconversion between the J-aggregates and H-aggregates in the LbL film was repeatable and controllable by changing the pH of the solutions.  相似文献   

16.
Exciton-coupled charge-transfer (CT) dynamics in TiO(2) nanoparticles (NP) sensitized with porphyrin J-aggregates has been studied by femtosecond time-resolved transient absorption spectroscopy. J-aggregates of 5,10,15-triphenyl-20-(3,4-dihydroxyphenyl) porphyrin (TPPcat) form CT complexes on TiO(2) NP surfaces. Catechol-mediated strong CT coupling between J-aggregate and TiO(2) NP facilitates interfacial exciton dissociation for electron injection into the conduction band of the TiO(2) nanoparticle in pulse width limited time (<80 fs). Here, the electron-transfer (<80 fs) process dominates over the intrinsic exciton-relaxation process (J-aggregates: ca. 200 fs) on account of exciton-coupled CT interaction. The parent hole on J-aggregates is delocalized through J-aggregate excitonic coherence. As a result, holes immobilized on J-aggregates are spatially less accessible to electrons injected into TiO(2) , and thus the back electron transfer (BET) process is slower than that of the monomer/TiO(2) system. The J-aggregate/porphyrin system shows exciton spectral and temporal properties for better charge separation in strongly coupled composite systems.  相似文献   

17.
The noncovalent interaction of the cyanine dyes Cyan 2 and Cyan 45 with DNA (in a pH 7 phosphate buffer) was studied by spectral and fluorescent methods. Upon titration of dye solutions with a concentrated DNA solution, a drop in the absorption band of the initial dye, a long-wavelength shift, and a rise of the absorption of the dye bound to DNA occur. Simultaneously, a growth of dye fluorescence is observed. Mathematical modeling of the fluorescence growth has been performed on the basis of the formation of one or two types of dye complexes with DNA. The experimental results are adequately described by the model involving one type of the dye-DNA complex. It is shown that Cyan 2 binds to DNA probably as the cis-isomer, whereas Cyan 45 as the trans-isomer.  相似文献   

18.
Herein we report an extraordinary three-photon absorption cross-section (sigma'3) enhancement in J-aggregates supramolecular systems. The much higher value of sigma'3 in PIC J-aggregate (2.5 x 10(-71) cm6 s2 ph(-2)) compared to typical values obtained in organic molecules (10(-80) cm6 s2 ph(-2)) is attributed to the strong molecular transition dipole moment coupling in the supramolecular assembly. Three-photon absorption of PIC J-aggregates and monomer aqueous solutions were measured using the well known open aperture Z-scan technique pumping with a 25 ps pulse laser-OPG system at 1720 nm. This novel result opens new expectations for applications of supramolecular systems in bioimaging and medicine.  相似文献   

19.
The effect of addition of ionic liquids (ILs) on the aggregation behavior of a cyanine dye, 5,5',6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazolocarbocyanine (TDBC), was investigated. In basic aqueous buffer solutions (pH ≥ 10), TDBC preferably exists in its J-aggregated form. Addition of hydrophilic ILs > 5 wt % is observed to disrupt the TDBC J-aggregates, converting them to monomer form most likely because of the interaction between bulky IL cation and the J-aggregates in a time-dependent fashion. This is evidenced by the observed increase in monomer band absorbance at the expense of the absorbance band due to J-aggregates over time. Inorganic salts at similar molar concentrations do not cause this phenomenon but instead induce TDBC precipitation. At low concentrations (<5 wt %), the added IL acts similarly to the inorganic salts, reducing the overall absorbance of TDBC in the solution most likely due to cation exchange causing TDBC precipitation. Addition of a molecular solvent, ethanol, at 15 wt % results in an initial increase in monomer absorbance, albeit to a much lesser extent than for the corresponding molar fraction of IL, which then decreases over time with recovery of J-aggregate absorbance--quite opposite the time-dependent behavior seen for TDBC in PB at pH 12.0 with >5 wt % IL. The unique and dual behavior of ILs as an additive toward affecting cyanine dye aggregation is demonstrated.  相似文献   

20.
Linear spectral properties, including excitation anisotropy, of pseudoisocyanine or 1,1′-diethyl-2,2′-cyanine iodide (PIC) J-aggregates in aqueous solutions with J-band position at 573 nm were investigated. Two-photon absorption of PIC J-aggregates and monomer molecules was studied using an open aperture Z-scan technique. A strong enhancement of the two-photon absorption cross-section of PIC in the supramolecular J-aggregate assembly was observed in aqueous solution. This enhancement is attributed to a strong coupling of the molecular transition dipoles. No two-photon absorption at the peak of the J-band was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号