首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   8篇
晶体学   1篇
物理学   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Chitosan/gelatin blend nanofibers were electrospun and the focus of this study was on the chitosan and gelatin concretions and on morphology of resulting nanofibers. The morphology of electrospun chitosan/gelatin blend nanofibers were characterized using scanning electron microscope (SEM). The miscibility of blend was determined using a SEM and Fourier transform infrared spectrometer/attenuated total reflectance (FTIR/ATR). Antibacterial property and stability of samples was also investigated. Water contact angle measurement (WCA) was employed to investigate the wettability of nanofibers.  相似文献   
2.
The Electrolyte-UNIQUAC-NRF excess Gibbs function was applied to estimate ion specific adjustable parameters of various salts by global optimization of the experimental activity coefficients of 54 electrolyte solutions. Twenty-three ion specific parameters were obtained for water and several cations and anions. The estimated individual ion parameters have been used to predict osmotic coefficient of electrolyte solutions. By using only the specific values for ions, the anion–cation and ion–water interaction parameters of different salts can be precisely estimated. Consequently, the interaction parameters of sparingly insoluble salts without experimental activity data can be easily calculated. For a case study, the solubility of CaSO4 was predicted in relatively good agreement with experimental values over a wide range of temperatures up to 473.18 K.  相似文献   
3.
Recently, there are significant interests in the development of biomaterials with nonlinear response to an external stimulus. Thermoresponsive polymers as a well-known class of stimuli-responsive materials represent reversible hydrophilicity/hydrophobicity characteristics around a critical temperature. This switchable behavior applies for nondestructive cellular detachment from cultivation substrates. In this study, poly (N-isopropylacrylamide) (PNIPAAm)-grafted dishes were made up to harvest retinal pigmented epithelial (RPE) and periodontal ligament cell (PDLC) sheets. Wettability assessments verified that all functionalized surfaces were inverted from hydrophilic to hydrophobic state when the temperature rises from lower critical solution temperature (LCST) at 37 °C. Other physicochemical characteristics such as chemical composition, grafting thickness, and surface topography were investigated through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). ATR-FTIR results showed typical peaks of amide group corresponding to successful PNIPAAm polymerization. AFM microscopy results also proved creating a rough PNIPAAm layer with thickness of 29.2 nm after grafting process in the mixture of methanol and water. Cell culture experiments showed an irreversible cellular attachment/detachment from modified surfaces upon temperature changes. These results introduced thermoresponsive TCPS to noninvasively harvest RPE and PDLCs sheets especially for application in scaffold-free tissue engineering decorations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1567–1576  相似文献   
4.
Exposure to sound, heat, and increased physical workload can change physiological parameters. This study was conducted to evaluate the effect of concomitant exposure to sound, heat, and physical workload changes on physiological parameters in controlled laboratory conditions. This experimental crosssectional study was conducted in 35 male university students with a mean age of 25.75 years and a mean BMI of 22.69 kg/m2 . Systolic and diastolic blood pressure and heart rate were measured after 15 min rest in the laboratory, 5 and 10 min after starting the experiment, and then after 20 min in controlled laboratory conditions in five combination modes. The combination modes were (Sound: 65 dB, WBGT: 22°C, Speed: 1.7, Slope: 10%), (Sound: 65 dB, WBGT: 22°C, Speed: 3.4, Slope: 14%), (Sound: 95 dB, WBGT: 22°C, Speed: 1.7, Slope: 10%), (Sound: 65 dB, WBGT: 32°C, Speed: 1.7, Slope: 10%), and (Sound: 95 dB, WBGT: 32°C, Speed: 3.4, Slope: 14%). Mixed model analysis and paired t-test were applied for analysis. The results showed that the mean physiological parameters (Systolic and diastolic blood pressure and heart rate) increased when different combination modes worsened (Sound from 65 to 95 dB, WBGT from 22°C to 32°C, speed from 1.7 to 3.4, and slope from 10% to 14%, and when sound: 95 dB, WBGT: 32°C, Speed: 3.4, and Slope: 14%). Moreover, the mean changes of systolic and diastolic blood pressure were significant in all conditions when compared with the reference condition (Sound: 65 dB, WBGT: 22°C, Speed: 1.7, and Slope: 10%). The mean heart rate changes were also significant except for exposure to the second condition (Sound: 65 dB, WBGT: 22°C, Speed: 3.4, Slope: 14%) and the third condition (Sound: 95 dB, WBGT: 22°C, Speed: 1.7, Slope: 10%). Exposure to hazardous levels of sound, heat, and workload has adverse effects on physiological parameters. Concomitant exposure to all three hazards has a synergistic effect and increases the adverse effect.  相似文献   
5.
6.
The first examples of gold(I) trimethylsilylchalcogenolate complexes were synthesized and their reactivity showcased in the preparation of a novel gold–copper–sulfur cluster [Au4Cu4S4(dppm)2] (dppm=bis(diphenylphosphino)methane). The unprecedented structural chemistry of this compound gives rise to interesting optoelectronic properties, including long‐lived orange luminescence in the solid state. Through time‐dependent density functional theory calculations, this emission is shown to originate from ligand‐to‐metal charge transfer facilitated by Au???Cu metallophilic bonding.  相似文献   
7.
Aran K  Fok A  Sasso LA  Kamdar N  Guan Y  Sun Q  Ündar A  Zahn JD 《Lab on a chip》2011,11(17):2858-2868
This report describes the design, fabrication, and testing of a cross-flow filtration microdevice, for the continuous extraction of blood plasma from a circulating whole blood sample in a clinically relevant environment to assist in continuous monitoring of a patient's inflammatory response during cardiac surgeries involving cardiopulmonary bypass (CPB) procedures (about 400,000 adult and 20,000 pediatric patients in the United States per year). The microfiltration system consists of a two-compartment mass exchanger with two aligned sets of PDMS microchannels, separated by a porous polycarbonate (PCTE) membrane. Using this microdevice, blood plasma has been continuously separated from blood cells in a real-time manner with no evidence of bio-fouling or cell lysis. The technology is designed to continuously extract plasma containing diagnostic plasma proteins such as complements and cytokines using a significantly smaller blood volume as compared to traditional blood collection techniques. The microfiltration device has been tested using a simulated CPB circulation loop primed with donor human blood, in a manner identical to a clinical surgical setup, to collect plasma fractions in order to study the effects of CPB system components and circulation on immune activation during extracorporeal circulatory support. The microdevice, with 200 nm membrane pore size, was connected to a simulated CPB circuit, and was able to continuously extract ~15% pure plasma volume (100% cell-free) with high sampling frequencies which could be analyzed directly following collection with no need to further centrifuge or modify the fraction. Less than 2.5 ml total plasma volume was collected over a 4 h sampling period (less than one Vacutainer blood collection tube volume). The results tracked cytokine concentrations collected from both the reservoir and filtrate samples which were comparable to those from direct blood draws, indicating very high protein recovery of the microdevice. Additionally, the cytokine concentration increased significantly compared to baseline values over the circulation time for all cytokines analyzed. The high plasma protein recovery (over 80%), no indication of hemolysis and low level of biofouling on the membrane surface during the experimental period (over 4 h) were all indications of effective and reliable device performance for future clinical applications. The simple and robust design and operation of these devices allow operation over a wide range of experimental flow conditions and blood hematocrit levels to allow surgeons and clinicians autonomous usage in a clinical environment to better understand the mechanisms of injury resulting from cardiac surgery, and allow early interventions in patients with excessive postoperative complications to improve surgical outcomes. Ultimately, monolithic integration of this microfiltration device with a continuous microimmunoassay would create an integrated microanalysis system for tracking inflammation biomarkers concentrations in patients for point-of-care diagnostics, reducing blood analysis times, costs and volume of blood samples required for repeated assays.  相似文献   
8.
9.
In this work using an electrochemical technique, deposition and crystal growth of calcium carbonate and barium sulphate at a stainless steel electrode is investigated through a rotating disk electrode involving oxygen reduction under diffusion condition. The influence of some parameters such as pressure, temperature, surfactant, cosalt and pH on morphology and deposition of CaCO3 and BaSO4 at surface of the stainless steel are studied. The results of the temperature tests reveal that the surface deposition is reduced by increase of the temperature and decrease of pH. The pressure also proves to have a significant influence on the morphology and the structure of calcium carbonate and barium sulphate deposition at the metal surface. With establishing a flow condition at high pressure, nucleation and deposition of calcium carbonate and barium sulphate at the metal surface generate the nano size of CaCO3 and BaSO4 crystals and leads to reduction of the coverage of the surface. In the presence of surfactant, it is shown that deposition of the calcium carbonate decreases the surface coverage so that after the point of the critical molar concentration of surfactant, a reduction of deposition of the calcium carbonate and barium sulphate at the surface can be clearly observed. Finally, influence of monovalent cosalts such as NaCl and KCl are investigated so that it does not present any certain trend in the deposition; however the morphology of the deposited crystal considerably changes.  相似文献   
10.
The new electrolyte-UNIQUAC-NRF excess Gibbs function is obtained for calculation of the activity coefficient of the binary electrolyte solutions. The excess Gibbs energy of the model consists of the Pitzer–Debye–Hückel equation, describing the long-range electrostatic contribution and the electrolyte-UNIQUAC-NRF model to account for the short-range contributions. With two adjustable parameters per electrolyte, the new model is applied to correlation of the mean activity coefficients of more than 130 binary aqueous electrolyte solutions at 25 °C. Also the binary parameters, obtaining from regression of mean activity data, are used for prediction of osmotic coefficient data for the same electrolytes. The results are compared with various local composition models such as the electrolyte-NRTL, electrolyte NRF-Wilson, electrolyte-NRTL-NRF, N-Wilson-NRF models. The comparison of the results with experiment demonstrates that the new model can correlate the experimental activity coefficient data and predict the osmotic coefficient data of binary electrolytes accurately.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号