首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
化学   28篇
力学   3篇
数学   3篇
物理学   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2006年   1篇
  2004年   4篇
  2003年   2篇
  1994年   1篇
  1983年   2篇
排序方式: 共有36条查询结果,搜索用时 109 毫秒
1.
Surface roughness is one of the most common performance measurements in machining process and an effective parameter in representing the quality of machined surface. The minimization of the machining performance measurement such as surface roughness (Ra) must be formulated in the standard mathematical model. To predict the minimum Ra value, the process of modeling is taken in this study. The developed model deals with real experimental data of the Ra in the end milling machining process. Two modeling approaches, regression and Artificial Neural Network (ANN), are applied to predict the minimum Ra value. The results show that regression and ANN models have reduced the minimum Ra value of real experimental data by about 1.57% and 1.05%, respectively.  相似文献   
2.
A chemically modified carbon-paste electrode (CPE) is prepared by incorporating congo red (CR) immobilized on multi-walled carbon nanotube (MWCNT). The results show that CR is effectively immobilized on the surface of MWCNT under the ultrasonic agitation in aqueous solution and further incorporating the nafion. The prepared electrode, due to the electrostatic repulsions between the CR and ascorbate anion, is capable to mask the response of the ascorbic acid (AA) completely and provide an effective method for the detection of minor amounts of uric acid (UA) in the presence of high concentrations of AA. On the other hand, an increase in the microscopic area of the electrode by addition of MWCNT together with the electrocatalytic activity caused to a significant enhancement in the voltammetric response to UA. Optimization of the amounts of composite modifier in the matrix of CPE is performed by cyclic and differential pulse voltammetric measurements. The modified electrode shows a linear response to UA in the range of 1.0 × 10−7–1.0 × 10−4 M with a detection limit of 1.0 × 10−8 M. The electrode exhibits excellent accuracies for the determination of UA in the presence of high concentrations of AA (a recovery of 97.6%). The response of the electrode toward sulfhydryl compounds such as cysteine, penicillamine, and glutathione is not considerable. This reveals a good selectivity for the voltammetric response toward UA. The effective electrocatalytic property, ability for masking the voltammetric responses of the other biologically reducing agents, ease of preparation, and surface regeneration by simple polishing together with high reproducibility and stability of the responses make the modified electrode suitable for the selective and sensitive voltammetric detection of sub-micromolar amounts of UA in clinical and pharmaceutical preparations.  相似文献   
3.
The H-point standard addition method (HPSAM) has been applied for the simultaneous determination of nickel and copper in trace levels, using 1-(2-pyridylazo)-2-naphthol (PAN) as a chromogenic reagent in aqueous Tween 80 micellar media. Under the optimum condition, the simultaneous determinations of nickel and copper by HPSAM were performed. The absorbances at one pair of wavelengths, 548 and 579 nm, were monitored with the addition of standard solutions of copper. The method is able to accurately determine copper-to-nickel ratios of 15:1 to 1:10 (Wt/Wt). The effects of diverse ions on the determination of nickel and copper to investigate the selectivity of the method were also studied. The recommended procedure was successfully applied to some water and alloy samples.  相似文献   
4.
The formed cobalt-a-benzilmonoxime complex was adsorbed onto microcrystalline naphthalene. Then it was determined by zero and first derivative spectrophotometry and by atomic absorption spectrophotometry (AAS) after dissolving into chloroform and methylisobutylketone (MIBK), respectively. Under optimum conditions, cobalt in the range of 1.0 - 20.0, 0.4 - 30.0 and 2.5 - 50.0 microg could be determined by spectrophotometry, first derivative spectrophotometry and AAS method, respectively. By the method, a preconcentration factor equal to approximately 30 for cobalt was obtained. The effect of diverse ions on the determination of 5.0 microg cobalt was also studied. The method was successfully applied to some pharmaceuticals and synthetic alloy samples.  相似文献   
5.
In this paper, the effect of making swirling flow inside an annulus on the subcooled boiling heat transfer has been studied and discussed both experimentally and numerically. The Eulerian-Eulerian model and control volume technique have been used for numerical modeling of the problem. The experimental results show that the critical heat flux values are enhanced by making swirling flow. The experimental and numerical results also indicate that by making swirling flow inside the annulus, the subcooled boiling heat transfer coefficients are increased. Moreover, the experimental and numerical values of the boiling heat transfer coefficients show good agreement with each other.  相似文献   
6.
An economic process for manufacturing of molten carbonate fuel cells was developed. This process consisted of fabricating the matrix by simply cutting it from a highly porous part with the geometry like an insulator brick, brush painting of the cathode layer followed by sintering and deposition of anode layer through thermal spray process. In order to manage the electrolyte content in the matrix and electrodes, coating of outer surfaces of the produced matrix with alumina slurry provided the required pores with small size at the interfaces with the electrodes. The polarization curves of the cells with alumina slurry coating and without it were not significantly different. The produced layer with small pores at the matrix outer surfaces caused the vaporization of the molten carbonate salt electrolyte to be reduced from 22.9% to 14.4% of initially infiltrated in salt weight content within 100 h of heat treating at 650 °C. This is at the same time to have the benefit of larger supply of electrolyte due to the application of highly porous matrix.  相似文献   
7.
A novel heterogeneous composite material based on reduced graphene oxide (rGO) and bismuth vanadate (BiVO4) was prepared and characterized by various techniques such as powder XRD, HRTEM, EADX, UV–Vis‐DRS, FT‐IR, Raman, BET and XPS analyses. The characterization results reveal that the rGO well decorated by BiVO4. The electrochemical impedance spectroscopy (EIS) shows the increasing of charge transfer of rGO/BiVO4 in presence of light irradiation. In this research, the pure BiVO4 and rGO/BiVO4 composite have been explored for photocatalytic reduction of nitroarenes. Among the prepared nanocomposites, rGO loaded with 10% BiVO4 catalyst (noted as rGO/BiVO4–10%) shows the best performance for the photo‐reduction of various nitroaromatic molecules to their corresponding amine compounds under visible‐light irradiation at room temperature. The catalyst exhibited in particular excellent photocatalytic activity for the conversion of 1,4‐dinitrobenzene to 4‐nitroanilline (100% conversion) in 20 min, 4‐chloronitrobenzene to 4‐chloroaniline and 2‐nitrophenol to 2‐aminophenol (100% conversion) in only 30 min. In addition, the conversion of 4‐bromonitrobenzene, 4‐iodonitrobenzene to their corresponding amine compounds (100% conversion) was achieved in 60 min. The catalyst was recovered for several times and reused without decreasing of its efficiency.  相似文献   
8.
Synthesis of magnetic polymer particles (MPP) was carried out through two steps. Firstly, the iron oxide particles carrying vinyl groups were synthesized, and in the second step, styrene (ST), divinyl benzene (DVB), and 2-hydroxyethyl methacrylate (HEMA) were polymerized on the surface of modified iron oxide through an emulsifier-free emulsion polymerization technique. The final particles were characterized by a Fourier transform infrared spectroscopy (FTIR), Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR), X-ray diffractometer (XRD), thermal gravimetry analysis (TGA), Fritsch particle sizer, scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). Experimental analysis confirmed that all the iron oxide particles were embedded in a polymer phase and the final particles have more than 67 % iron oxide content. According to magnetometry data, the shape of the hysteresis loops evidences the ferromagnetic character of the particles.  相似文献   
9.
Track irregularities have a dramatic impact on the response and vibration of a railway vehicle and on the interaction between wheel and rail. The random nature of the track structure and constituent materials and the effects of other factors such as maintenance conditions and transit traffic give rise to the random nature of track irregularities. This research provides a method to estimate the derailment probability of a railway vehicle where track irregularities are assumed to be random, and the interaction of the track and the moving train is considered using advanced dynamic analysis. For this purpose, the limit state function of derailment was estimated using the response surface method and advanced simulation. The probability of derailment was then estimated using a Level 3 reliability method.  相似文献   
10.
A new solid-phase extraction method was developed for trace determination of Hg(II) by using a small amount of naked magnetite nanoparticles as an adsorbent. The magnetite nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The adsorbed Hg(II)-dithizone complex was eluted with 1.0 mL aliquot of an acidic 1-propanol solution prior to electrothermal atomic absorption spectrometry. A huge positive effect was found on the mercury adsorption by ionic strength. Under optimized condition, a linear calibration curve was obtained for mercury in the range of 0.2–50 ng mL?1 with relative standard deviation in the range of 0.5–2.0%. The limit of detection and enrichment factor were 0.01 ng mL?1 and 98.3, respectively. The effects of coexisting ions were studied extensively, and a new clean-up procedure was used to remove the matrix effects by using a simple sample pretreatment step using a little amount of magnetite nanoparticles. The method was successfully applied to the determination of Hg(II) in different water and human urine samples and a commercial sodium nitrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号