首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
化学   13篇
晶体学   1篇
数学   2篇
物理学   8篇
  2021年   6篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   3篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有24条查询结果,搜索用时 21 毫秒
1.
Reduced anionic flavin adenine dinucleotide (FADH?) is the critical cofactor in DNA photolyase (PL) for the repair of cyclobutane pyrimidine dimers (CPD) in UV‐damaged DNA. The initial step involves photoinduced electron transfer from *FADH? to the CPD. The adenine (Ade) moiety is nearly stacked with the flavin ring, an unusual conformation compared to other FAD‐dependent proteins. The role of this proximity has not been unequivocally elucidated. Some studies suggest that Ade is a radical intermediate, but others conclude that Ade modulates the electron transfer rate constant (kET) through superexchange. No study has succeeded in removing or modifying this Ade to test these hypotheses. Here, FAD analogs containing either an ethano‐ or etheno‐bridged Ade between the AN1 and AN6 atoms (e‐FAD and ε‐FAD, respectively) were used to reconstitute apo‐PL, giving e‐PL and ε‐PL respectively. The reconstitution yield of e‐PL was very poor, suggesting that the hydrophobicity of the ethano group prevented its uptake, while ε‐PL showed 50% reconstitution yield. The substrate binding constants for ε‐PL and rPL were identical. ε‐PL showed a 15% higher steady‐state repair yield compared to FAD‐reconstituted photolyase (rPL). The acceleration of repair in ε‐PL is discussed in terms of an ε‐Ade radical intermediate vs superexchange mechanism.  相似文献   
2.
We studied the oxidation of neo-pentane by combining experiments, theoretical calculations, and mechanistic developments to elucidate the impact of the 3rd O2 addition reaction network on ignition delay time predictions. The experiments are based on photoionization mass spectrometry in jet-stirred and time-resolved flow reactors allowing for sensitive detection of the keto-hydroperoxide (KHP) and keto-dihydroperoxide (KDHP) intermediates. With neo-pentane exhibiting a unique symmetric molecular structure, which consequently results only in single KHP and KDHP isomers, theoretical calculations of ionization and fragment appearance energies and of absolute photoionization cross sections enabled the unambiguous identification and quantification of the KHP intermediate. Its temperature and time-resolved profiles together with calculated and experimentally observed KHP-to-KDHP signal ratios were compared to simulation results based on a newly developed mechanism that describes the 3rd O2 addition reaction network. A satisfactory agreement has been observed between the experimental data points and the simulation results, thus adding confidence to the model's overall performance. Finally, this mechanism was used to predict ignition delay times reported previously in shock tube and rapid compression machine experiments (J. Bugler et al., Combust. Flame 163 (2016) 138–156). While the model accurately reproduces the experimental data, simulations with and without the 3rd O2 addition reaction network included reveal only a negligible effect on the predicted ignition delay times at 10 and 20 atm. According to model calculations, low temperatures and high pressures promote the importance of the 3rd O2 addition reactions.  相似文献   
3.
Propanol and butanol isomers have received significant research attention as promising fuel additives or neat biofuels. Robust chemical kinetic models are needed that can provide accurate and efficient predictions of combustion performance across a wide range of engine relevant conditions. This study seeks to improve the understanding of ignition and combustion behavior of pure C3-C4 linear and iso-alcohols, and their blends with gasoline at engine-relevant conditions. In this work, a kinetic model with improved thermochemistry and reaction kinetics was developed based on recent theoretical calculations of H-atom abstraction and peroxy radical reaction rates. Kinetic model validations are reported, and the current model reproduces the ignition delay times of the C3 and C4 alcohols well. Variations in reactivity over a wide range of temperatures and other operating conditions are also well predicted by the current model. Recent ignition delay time measurements from a rapid compression machine of neat iso-propanol and iso-butanol [Cheng et al., Proc. Combust Inst. (2020)] and blends with a research grade gasoline [Goldsborough et al., Proc. Combust Inst. (2020)] at elevated pressure (20–40 bar) and intermediate temperatures (780–950 K) were used to demonstrate the accuracy of the current kinetic model at conditions relevant to boosted spark-ignition engines. The effects of alcohol blending with gasoline on the autoignition behavior are discussed. The current model captures the suppression of reactivity in the low-temperature and negative-temperature-coefficient (NTC) region when either isopropanol and isobutanol are added to a research grade gasoline. Sensitivity and reaction flux analysis were performed to provide insights into the relevant fuel chemistry of the C3-C4 alcohols.  相似文献   
4.
To improve our understanding of the combustion characteristics of propyne, new experimental data for ignition delay times (IDTs), pyrolysis speciation profiles and flame speed measurements are presented in this study. IDTs for propyne ignition were obtained at equivalence ratios of 0.5, 1.0, and 2.0 in ‘air’ at pressures of 10 and 30 bar, over a wide range of temperatures (690–1460 K) using a rapid compression machine and a high-pressure shock tube. Moreover, experiments were performed in a single-pulse shock tube to study propyne pyrolysis at 2 bar pressure and in the temperature range 1000–1600 K. In addition, laminar flame speeds of propyne were studied at an unburned gas temperature of 373 K and at 1 and 2 bar for a range of equivalence ratios. A detailed chemical kinetic model is provided to describe the pyrolytic and combustion characteristics of propyne across this wide-ranging set of experimental data. This new mechanism shows significant improvements in the predictions for the IDTs, fuel pyrolysis and flame speeds for propyne compared to AramcoMech3.0. The improvement in fuel reactivity predictions in the new mechanism is due to the inclusion of the propyne + H?2 reaction system along with ?H radical addition to the triple bonds of propyne and subsequent reactions.  相似文献   
5.
Distillate fuels contain significant proportions of naphtheno-aromatic components and tetralin is a suitable surrogate component to represent this molecular moiety. The presence of aromatic and naphthyl rings makes kinetic modeling of tetralin very challenging. Primary radicals formed during the oxidation of tetralin can be aryl, benzylic or paraffinic in nature. Using available information on reaction paths and rate constants of naphthenes and alkyl-aromatics, a kinetic model of tetralin has been developed in the current study with emphasis on low-temperature chemistry and high-pressure conditions. Due to the lack of high-level quantum chemical calculations on reaction pathways of tetralin, analogous rates from ab-initio studies on benzylic and paraffinic radicals have been adopted here. Some modifications to the reaction rate rules are incorporated to account for the unique characteristics of tetralin's molecular structure. Important reaction channels have been identified using reaction path and brute force sensitivity analyses. In order to investigate the model performance at low temperatures, new experiments are carried out in a rapid compression machine on blends of tetralin and 3-methylpentane. Blending of low-reactivity tetralin with a high-reactivity alkane allowed the investigation of tetralin ignition at very low temperatures (665 – 856 K). The kinetic model developed in the current study is found to predict the current experiments and literature data adequately. The new model will aid in high-fidelity surrogate predictions at engine-relevant conditions.  相似文献   
6.
In this paper, a decision support tool that automates crew recovery during irregular operations for large-scale commercial airlines is presented. The tool is designed for airlines that adopt the hub-spoke network stru cture. The advance of this tool over the existing ones is that it recovers projected crew problems that arise due to current system disruptions. In other words, it proactively recovers crew problems ahead of time before their occurrence. In addition, it gives a wide flexibility to react to different operation scenarios. Also, it solves for the most efficient crew recovery plan with the least deviation from the originally planned schedule. The tool adopts a rolling approach in which a sequence of optimization assignment problems is solved such that it recovers flights in chronological order of their departure times. In each assignment problem, the objective is to recover as many flights as possible while minimizing total system cost resulting from resource reassignments and flight delays. The output of this tool is in the form of new crew trippairs that cover flights in the considered horizon. A test case is presented to illustrate the model capabilities to solve a real-life problem for one of the major commercial airlines in the U.S.  相似文献   
7.
Superhydrophobic surfaces have contact angles that exceed 150 degrees and are known to reduce surface fouling, protect surfaces, and improve liquid-liquid separations. Electrospun sub-micron fiber mats can perform as superhydrophobic surfaces. Superhydrophobic behavior is typically measured on planar surfaces, whereas applications may require curved surfaces. This paper discuses the measurement of water contact angles of fiber mats formed on cylindrical surfaces to create superhydrophobic behavior on curved surfaces. Equations are derived that relate the radius of curvature of spherical and cylindrical surfaces and drop size to the observed contact angle on the curved surfaces. Calculations from the equations agree well with experimental observations on spherical surfaces reported in literature and on cylindrical surfaces created in our lab.  相似文献   
8.
This paper presents a decision support tool for airlines schedule recovery during irregular operations. The tool provides airlines control centers with the capability to develop a proactive schedule recovery plan that integrates all flight resources. A rolling horizon modeling framework, which integrates a schedule simulation model and a resource assignment optimization model, is adopted for this tool. The schedule simulation model projects the list of disrupted flights in the system as function of the severity of anticipated disruptions. The optimization model examines possible resource swapping and flight re-quoting to generate an efficient schedule recovery plan that minimizes flight delays and cancellations. A detailed example that illustrates the application of the tool to recover the schedule of a major US air-carrier during a hypothetical ground delay program scenario is presented. The results of several experiments that illustrates overall model performance in terms of solution quality and computation experience are also given.  相似文献   
9.
The electrochemical properties of 24 1,4‐dioxidoquinoxalin‐2‐yl ketone derivatives with varying degrees of anti‐Chagas activity were investigated in the aprotic solvent dimethylformamide (DMF) by cyclic voltammetry and first‐derivative cyclic voltammetry. For this group of compounds, the first reduction in DMF was either reversible or quasireversible and consistent with reduction of the N‐oxide functionality to form the radical anion. The second reduction process for these compounds was irreversible under the conditions used. The reduction potentials correlated well with molecular structure. Substitution in the 3‐, 6‐, and 7‐ positions of the quinoxaline ring by electron‐withdrawing substituents directly affected the ease of reduction and improved the biological activities of these compounds, whereas substitution by electron‐donating groups had the opposite effect. The electrochemical results, when combined with previous work on their mechanism of action against Chagas disease and their measured anti‐Chagas activities, indicated that the quinoxaline 1,4‐dioxide system serves as a promising starting point for chemical modifications aimed at improving the T. cruzi activity via a possible bioreduction mechanism.  相似文献   
10.
A single-pulse shock tube study of the four pentene isomers is carried out at 2 ± 0.16 bar and 900–1600 K. C1 to C6 species profiles were recorded using gas chromatography mass spectrometry analyses. The species are identified using mass spectrometry and quantified by flame ionization detection. High-pressure limiting and pressure-dependent rate constants for 2M1B, 2M2B and 3M1B + ? were calculated using RRKM theory with a Master Equation (ME) analysis using the Master Equation System Solver, MESS. A mechanism was formulated based on rate rules and theoretical calculations. Comparisons between experimental results and model simulations are provided for all of the five pentene isomers investigated with satisfactory agreement. Furthermore, an insight is provided into the influence of molecular structure on the reactivity of pyrolysis chemistry. Interestingly, it is found that the HACA mechanism is much less prominent for benzene formation compared to the role of cyclopentadienyl radical recombination with methyl radicals and also the recombination of propargyl radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号