首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   13篇
物理学   6篇
  2013年   5篇
  2012年   3篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2002年   2篇
  1983年   2篇
  1923年   1篇
  1921年   1篇
  1920年   1篇
排序方式: 共有19条查询结果,搜索用时 25 毫秒
1.
2.
Real-time imaging in the terahertz (THz) spectral range was achieved using a milliwatt-scale, 2.8 THz quantum cascade laser and an uncooled, 160 x 120 pixel microbolometer camera modified with Picarin optics. Noise equivalent temperature difference of the camera in the 1-5 THz frequency range was estimated to be at least 3 K, confirming the need for external THz illumination when imaging in this frequency regime. Despite the appearance of fringe patterns produced by multiple diffraction effects, single-frame and extended video imaging of obscured objects show high-contrast differentiation between metallic and plastic materials, supporting the viability of this imaging approach for use in future security screening applications.  相似文献   
3.
4.
5.
Low molar mass hyperbranched polyesters were prepared by polycondensation of 1,1,1‐tris(hydroxymethyl)ethane and various dimethyl esters of aliphatic dicarboxylic acids in bulk. The usefulness of nontoxic bismuth salts as transesterification catalysts for these polycondensations was studied. The maximum conversion increased, and the reaction time decreased in the following sequence of increasing reactivity: dimethyl sebacate < adipate < glutarate < succinate. Regardless of the monomer combination, gelation occurred at conversions > 91.5%. The hyperbranched structure was proven by 1H NMR spectroscopy and the absence of cyclic elements by MALDI‐TOF mass spectrometry. Quantitative acylation of all CH2OH groups was achieved with an excess of acetic anhydride or methycrylic anhydride. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 231–238, 2009  相似文献   
6.
7.
Diphenyl bismuth bromide (Ph2BiBr) allows for polymerizations of ε‐caprolactone in bulk at temperatures as low as 40 °C. Time conversion curves indicate a lower reactivity than tin(II) 2‐ethyl hexanoate (SnOct2) plus alcohol at 120 °C and also at 60 °C. Ph2BiBr also proved to be less reactive than Ph2BiOEt, but more reactive than BiBr3 and Bi(III)n‐hexanoate. Small amounts (≤1 wt %) of cyclic oligoester were detectable by MALDI‐TOF mass spectrometry even at a polymerization temperature of 40 °C. The molar masses depend on the monomer–initiator ratio (M/I) but not in a simple parallel manner. With M/I = 600/1 number average molecular weights (Mns, corrected values) around 500 kDa were obtained. Even at low M/Is high molar mass polylactones were found and CH2Br endgroups were not detectable. However, upon addition of tetra(ethylene glycol) the coinitiator was completely incorporated yielding telechelic polylactones and the molar mass increased with the monomer–coinitiator ratio. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 851–859, 2008  相似文献   
8.
A complex consisting of one Bi3+ ion and two 2‐mercaptoethanol units (BiME2) was used as initiator for the ring‐opening polymerization of ε‐caprolactone in bulk. A kinetic comparison showed that BiME2 is as reactive as initiator as Sn‐octanoate and more reactive than Bi‐hexanoate. The difference to BiHex3 decreased at higher temperatures and upon addition of an alcohol as coinitiator. When tetra(ethylene glycol) was used as coinitiator, it was completely incorporated into the poly(εCL) chain, so that telechelic polylactones having two OH‐endgroups were formed. In the absence of a coinitiator, 2‐mercaptoethanol or its disulfide were incorporated in the form of ester groups. Furthermore, it was found by MALDI‐TOF mass spectrometry that small amounts of cyclic oligolactones (detected up to a degree of polymerization of 17) were formed under all reaction conditions. Higher temperatures and longer times favored a higher content of cycles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3175–3183, 2006  相似文献   
9.

Equimolar copolymerizations of glycolide and L‐lactide were conducted in bulk in the temperature range from 100 to 160°C. The catalytic efficiency of tin(II)2‐ethylhexanoate (SnOct2) and bismuth(III)n‐hexanoate (BiHex3) were compared under identical conditions. Furthermore, four copolymerizations were conducted with bismuth subsalicylate as initiator/catalyst. The isolated copolyesters were characterized by viscosity and SEC measurements, by 1H‐NMR spectroscopy with regard to their composition and with 13C‐NMR spectroscopy with regard to their sequences. BiHex3 proved to be nearly as efficient as initiator as SnOct2 and the sequences were somewhat closer to randomness than those obtained from SnOct2. All copolyesters were amorphous materials soluble in a variety of organic solvents. Chain extension with diisocyanates raised the molecular weights by a factor of 5–7.  相似文献   
10.

Copolyesters of isosorbide and 1,4‐butane diol were prepared by Ti(OBu)4‐catalyzed transesterifications with dimethyl terephthalate in bulk at temperatures up to 250°C. The content of isosorbide was considerably lower than expected from the feed ratio and the molar masses were low, so that no DSC measurements were conducted. Copolycondensations of isosorbide and 1,4‐butane diol with terephthaloyl chloride were either performed in dichloromethane at 40°C or in toluene at 100°C. The second method gave the higher molar masses. However, both series of polycondensations had the content of isosorbide roughly paralleled the feed ratios in common. The DSC measurements revealed that even 6 mol% of isosorbide is sufficient to raise the glass‐transition temperature (Tg) by 10–12°C (up to 55°C). With 50 mol% of isosorbide, the Tg reaches 100°C. Yet, incorporation of isosorbide also reduces the melting temperature Tm and the degree of crystallinity, and a mol percentage above 30% prevents crystallization completely. In summary, incorporation of isosorbide allows for fine‐tuning of Tg and Tm of poly(butylene terephthalate) over a wide range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号