首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
物理学   11篇
  2014年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1986年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
We report the effect of hydrostatic pressure on the photoreflectance spectra derived from the Γ, X and L bands of a GaAs---AlxGa1−xAs heterostructure. The pressure dependence of the quantum well transitions and the valence band-offsets are accurately determined.  相似文献   
2.
Deterioration of radiofrequency (RF) inhomogeneity with increasing static magnetic field in magnetic resonance imaging (MRI) is one of the fundamental challenges preventing their clinical rendition and posing safety hazards. Variation in RF coil designs could help redistribute RF energy absorption over the imaged object. This work is intended to determine experimentally the difference in RF heating produced within a human head phantom by in situ measurement of RF inhomogeneity as a function of coil design utilized at 8 T. The heating patterns of 1/4 wavelength (long) and 1/8 wavelength 11-cm (short) transverse electromagnetic (TEM) coils loaded with a homogeneous human head phantom at 340 MHz were evaluated. In addition, different transmit/receive (T/R) configurations were used in search for the possibility of "hot-spot" formation. Fluoroptic thermometry was used to measure temperatures in multiple positions in a head phantom made of ground turkey breast for RF powers corresponding to a specific absorption rate (SAR) of 4.0 W/kg for 10 min. Numerical simulations were performed to study the general RF power deposition patterns in phantoms at 340 MHz including the effects of field polarization. The temperature increases varied from 0 to 0.8 degrees C for the long RF coil, while the short RF coil produced a maximum temperature change of 0.5 degrees C. Similar to ultra high-field electromagnetic simulations, these measurements revealed low peripheral and high deep-tissue heating at 8 T. The findings indicated that the largest temperature changes for both cases were less than 1 degrees C. While these results showed an increase in localized heating due to RF pulses at 8 T, they highlight that RF inhomogeneity could be redistributed using different RF coil designs through which the hot spots could be made cooler.  相似文献   
3.
A three-dimensional finite difference time domain model was developed where the high pass birdcage coil and the imaged object are analysed as a single unit. A study was performed comparing linear, conventional quadrature, and four-port excitation at 64 MHz and 200 MHz for different coil loadings, namely muscle phantoms and an anatomically detailed human head model. A phase array concept was utilized to excite the birdcage coil in four ports. Two phase conditions were analyzed, the simple fixed phase and the variable phase. At 200 MHz, compared to the conventional quadrature drive, the four-port drive reduces the effects of the tissue-coil interactions leading to more uniform currents on the coil legs and consequently to a better B(1) field homogeneity. Also at 200 MHz, driving the coil in four ports provides an SAR distribution with peak values that are significantly less than those with linear or quadrature excitations.  相似文献   
4.
While magnetic resonance images essentially contain a map of the both circularly polarized components of the RF transverse magnetic fields (B(1) field), the thermal heat and electromagnetic power deposition is generated by the associated electric fields. Measurement of electric field distributions/intensities across a sample yields an indirect indication of possible cause of heating within the sample and potentially enables the detection of "hot spots," which can be present within inhomogeneous radiofrequency (RF) fields, such as the case with magnetic resonance imaging at high field strength. As a result, establishing a valid technique for direct measurements of the electric field and its correlation, obtained using computational electromagnetics, is essential in assessing (1) the safety of the RF coil designs and (2) the validity of the calculations. In this work, a probe was built and used to measure the transverse electric field (E(1) field) distributions within an empty 8 T (tuned to 340 MHz) RF head coil and within a saline water phantom loaded in the same coil. The measured E(1) field distributions were favorably compared to the distributions obtained utilizing a finite difference time domain in-house package.  相似文献   
5.
A systematic analysis of the effect of an 8.0 tesla static magnetic field on physiological and/or cognitive function is presented in the normal volunteer and in the swine. A study of ten human subjects revealed no evidence of detectable changes in body temperature, heart rate, respiratory rate, systolic pressure, and diastolic blood pressure after 1 hour of exposure. In addition, no cognitive changes were detected. Important ECG changes were noted which were related both to the position of the subject in the magnet and to the absolute strength of the magnetic field. As such, the ECG tracing at 8 tesla was not diagnostically useful. Nonetheless, all subjects exhibited normal ECG readings both before and following exposure to the 8 tesla field. Cardiac function was also examined in detail in the swine. No significant changes in body temperature, heart rate, left ventricular pressure, left ventricular end diastollic pressure, time rate of change of left ventricular pressure, myocardial stiffness index, cardiac output, systolic volume, troponin, and potassium levels could be detected following 3 h of exposure to a field strength of 8.0 tesla. It is concluded that no short term cardiac or cognitive effects are observed following significant exposure to a magnetic field of up to 8.0 tesla.  相似文献   
6.
Water diffusion within the brain is studied numerically for various clinical conditions. The numerical procedure used in this work is based on the Galerkin weighted residual method of finite-element formulation. A wide range of pertinent parameters such as Lewis number, cell volume, and the buoyancy ratio are considered in the present study. Comparisons with previously published work show excellent agreement. The results show that the diffusion coefficient, cell volume, and the buoyancy ratio play significant roles on the characterization of the mass and heat transfer mechanisms within the cell. Concentration maps are developed for various clinical conditions. Pertinent results for the streamlines, isotherms and the mass and heat transfer rates in terms of the average Sherwood and Nusselt numbers are presented and discussed for different parametric values. Experimental tests are also conducted to produce an 8 Tesla image which is compared with our numerical simulation. The present study provides essential maps for brain disorders classified based on several pertinent clinical attributes.  相似文献   
7.
Clinical evaluation and MR imaging of microangiopathy associated with hypertension is limited. We describe a case that illustrates sensitivity of MRI at 8 Tesla for imaging of microvasculature, iron, calcium deposits and silent white matter lesions (WML). A 60-year-old black hypertensive woman was evaluated for numbness in the face and extremities. MRI at 1.5 Tesla was unrevealing.MRI at 8 Tesla: Axial and sagittal Gradient Echo images were obtained with an 8T/80 cm human scanner and showed: 1) Large areas of signal voids due to ossifications and fat deposits within the falx. 2) Obstructed small vessels in the periventricular regions and distended cortical veins. 3) Numerous small WML, suggestive of mini-infarcts (<1 cm) and microhemorrhages. 4) Intracranial calcifications in the falx, tentorium, basal ganglia and chorioid plexus that were confirmed by CT scan. Atherosclerotic plaque in right carotid artery and reduced vasomotor reserve in middle cerebral arteries, documented by ultrasound, indicated large and small vessel disease.Conclusions: MRI at 8 Tesla improves visualization of microangiopathy, ossifications and iron deposits due to enhanced magnetic susceptibility at ultra high magnetic field.  相似文献   
8.
Tractography algorithms for diffusion tensor (DT) images consecutively connect directions of maximal diffusion across neighboring DTs in order to reconstruct the 3-dimensional trajectories of white matter tracts in vivo in the human brain. The performance of these algorithms, however, is strongly influenced by the amount of noise in the images and by the presence of degenerate tensors-- i.e., tensors in which the direction of maximal diffusion is poorly defined. We propose a simple procedure for the classification of tensor morphologies that uses test statistics based on invariant measures of DTs, such as fractional anisotropy, while accounting for the effects of noise on tensor estimates. Examining DT images from seven human subjects, we demonstrate that this procedure validly classifies DTs at each voxel into standard types (nondegenerate DTs, as well as degenerate oblate, prolate or isotropic DTs), and we provide preliminary estimates for the prevalence and spatial distribution of degenerate tensors in these brains. We also show that the P values for test statistics are more sensitive tools for classifying tensor morphologies than are invariant measures of anisotropy alone.  相似文献   
9.
Diffusion tensor imaging (DTI) data often suffer from artifacts caused by motion. These artifacts are especially severe in DTI data from infants, and implementing tight quality controls is therefore imperative for DTI studies of infants. Currently, routine procedures for quality assurance of DTI data involve the slice-wise visual inspection of color-encoded, fractional anisotropy (CFA) images. Such procedures often yield inconsistent results across different data sets, across different operators who are examining those data sets, and sometimes even across time when the same operator inspects the same data set on two different occasions. We propose a more consistent, reliable, and effective method to evaluate the quality of CFA images automatically using their color cast, which is calculated on the distribution statistics of the 2D histogram in the color space as defined by the International Commission on Illumination (CIE) on lightness and a and b (LAB) for the color-opponent dimensions (also known as the CIELAB color space) of the images. Experimental results using DTI data acquired from neonates verified that this proposed method is rapid and accurate. The method thus provides a new tool for real-time quality assurance for DTI data.  相似文献   
10.
A radio frequency (RF) and gradient spoiled fast low angle shot technique was used to acquire images from the human brain at 8 Tesla. The resulting FLASH images, obtained with a 17 degrees nutation, a 70 ms repetition time, and a 17 ms echo time, displayed an average signal-to-noise ratio (SNR) of 220:1 (slice thickness 2.2 mm, field-of-view 24 cm, matrix 256 x 128). These images were compared with images obtained at 1.5 Tesla using identical parameters yielding a signal-to-noise of less than 10:1. As such, the 8 Tesla images display a remarkable improvement in SNR with increasing field strength. The images also show little evidence of susceptibility distortion, chemical shift, or RF penetration limitations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号