首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2019年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Ghost imaging functions achieved by means of the spatial correlations between two photons is a new modality in imaging systems. With a small number of photons, ghost imaging is usually realized based on the position correlation of photon pairs produced from the spontaneous parametric down-conversion process. Here we demonstrate a way to realize multi-path ghost imaging by introducing an additional time correlation. Different delays of paths will induce the shift of the coincidence peak, which carries the information about objects. By choosing the suitable coincidence window, we obtain images of three objects simultaneously, with a visibility of 87.2%.This method provides insights and techniques into multi-parameter ghost imaging. It can be applied to other correlated imaging systems, for example, quantum spiral imaging.  相似文献   
2.
We present a two-photon interference experiment in a modified Mach-Zehnder(MZ) interferometer in which two Hong–Ou–Mandel effects occur in tandem and construct superposed two-photon states. The signal photons pass both the arms of the MZ interferometer while the idler photons pass one arm only. Interestingly, the probability of the idler photons emerging from any output port still shows a sine oscillation with the two-photon phase difference and it can be characterized only by the indistinguishability of the two-photon amplitudes. We also observe a two-photon interference pattern with a period being equal to the wavelength of the parametric photons instead of the two-photon photonic de Broglie wavelength due to the presence of two-photon phase difference, in particular, with complementary probabilities of finding the two-photon pairs in two output ports. The abundant observations can facilitate a more comprehensive understanding of the two-photon interference.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号