首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2018年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states(TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.  相似文献   
2.
We employ the second renormalization group method of tensor-network states to investigate thermodynamic properties of the ferromagnetic and antiferromagnetic Potts model on triangular lattices. From the temperature dependence of the internal energy and the specific heat, both the critical temperatures and critical exponents are evaluated. For the q = 3 antiferromagnetic Potts model, the critical temperature is found to be Tc = 0.627163±0.000003, which is at least one order of magnitude more accurate than that obtained by other methods.  相似文献   
3.
We show that the matrix (or more generally tensor) product states in a finite translation invariant system can be accurately constructed from a same set of local matrices (or tensors) that are determined from an infinite lattice system in one or higher dimensions. This provides an efficient approach for studying translation invariant tensor product states in finite lattice systems. Two methods are introduced to determine the size-independent local tensors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号