首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2022年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Wen-Jie Wang 《中国物理 B》2022,31(7):74206-074206
The effects of GaN/InGaN asymmetric lower waveguide (LWG) layers on photoelectrical properties of InGaN multiple quantum well laser diodes (LDs) with an emission wavelength of around 416 nm are theoretically investigated by tuning the thickness and the indium content of InGaN insertion layer (InGaN-IL) between the GaN lower waveguide layer and the quantum wells, which is achieved with the Crosslight Device Simulation Software (PIC3D, Crosslight Software Inc.). The optimal thickness and the indium content of the InGaN-IL in lower waveguide layers are found to be 300 nm and 4%, respectively. The thickness of InGaN-IL predominantly affects the output power and the optical field distribution in comparison with the indium content, and the highest output power is achieved to be 1.25 times that of the reference structure (symmetric GaN waveguide), which is attributed to the reduced optical absorption loss as well as the concentrated optical field nearby quantum wells. Furthermore, when the thickness and indium content of InGaN-IL both reach a higher level, the performance of asymmetric quantum wells LDs will be weakened rapidly due to the obvious decrease of optical confinement factor (OCF) related to the concentrated optical field in the lower waveguide.  相似文献   
2.
The extraordinary optical transmission(EOT) phenomenon of nano-periodic aperture array in metallic film has been widely investigated and used in biosensors. The surface plasmon resonance and cavity mode in some periodic nanostructures, such as nanohole and nanoslit, cause EOTs at certain wavelengths. This resonance wavelength is sensitive to the refractive index on the surface of periodic nanostructures. Therefore, the metallic nanostructures are expected to be good sensing elements. The sensing performances of gold nanoslit arrays are experimentally and theoretically investigated.Three-dimensional finite difference time domain(FDTD) simulations are utilized to explore their transmission spectra and steady-state field intensity distributions. The electron beam evaporation, electron beam lithography, and ion milling are applied to the gold nanoslit arrays with different widths and periods. The sensing performances of the gold nanoslit array are characterized via transmission spectra in four kinds of refractive index samples. The highest sensitivity reaches726 nm/RIU when the width of the gold nanoslit array is 38.5 nm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号