首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
物理学   7篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
An experiment of adaptive polarization mode dispersion (PMD) compensation for 40-Gb/s return-to-zero (RZ) optical communication system is reported. In the experiment, degree of polarization (DOP) is used as feedback signal and particle swarm optimization (PSO) method is adopted as logic control algorithm.The compensation time is about 200 ms, the compensated differential group delay (DGD) is up to 30 ps,and bit error rate (BER) of 10-9 is reached when PMD compensation is employed.  相似文献   
2.
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.  相似文献   
3.
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) in a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO).The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second order PMD, and the compensator is shown to be bit rate independent. The optimum searching time is within one hundred milliseconds.  相似文献   
4.
An experiment of adaptive polarization mode dispersion (PMD) compensation for 40-Gb/s return-to-zero (RZ) optical communication system is reported. In the experiment, degree of polarization (DOP) is used as feedback signal and particle swarm optimization (PSO) method is adopted as logic control algorithm. The compensation time is about 200 ms, the compensated differential group delay (DGD) is up to 30 ps, and bit error rate (BER) of 10-9 is reached when PMD compensation is employed.  相似文献   
5.
We report the adaptive compensation experiment of polarization mode dispersion (PMD) for 10-Gb/s non return-to-zero (NRZ) and return-to-zero (RZ) optical communication systems using a two-stage PMD compensator and the monitoring technique based on degree of polarization (DOP) feedback-signals. The DOP monitor has its advantages of bit-rate independent and modulation format independent. The two-stage compensator has the capacity of compensation for the first- and second-order PMD. The compensated differential group delay (DGD) is up to 80 ps, and compensated principal state of polarization rotation rate is 20 ps. The time used for compensation is less than 1 second.  相似文献   
6.
40Gbit/sOTDM系统中二阶偏振模色散自适应补偿技术研究   总被引:5,自引:4,他引:1  
报导了一个40 Gbit/s OTDM系统中二阶偏振模色散(PMD)自适应补偿系统,此实验系统基于偏振度的反馈控制方法实现了二阶偏振模色散自动补偿.在中心波长1560.5 nm处,补偿后的DGD和二阶PMD效应改善明显.采用粒子群优化算法作为偏振模色散自适应补偿的搜索算法,补偿时间30 ms左右.  相似文献   
7.
偏振模色散效应严重制约着长距离高速光纤通信的发展,偏振模色散的自适应补偿成为光通信领域研究的焦点。利用两阶段偏振模色散补偿器,采用6个自由度的粒子群优化算法(PSO),通过在线监测搜索光纤链路信号的偏振度极值作为反馈控制信息,在40Gb/s归零码高速光纤传输链路中成功实现了ms量级的偏振模色散自适应补偿。补偿前后采用庞加莱球法测量光纤链路中偏振模色散量,测量结果表明在信号中心波长1560.5nm处,差分群时延补偿前后测量值分别为21ps和1.3ps,而二阶偏振模色散补偿前后测量值分别为266ps^2和43.5ps^2。补偿后实验链路中的一阶和二阶的偏振模色散同时得到不同程度的补偿,并且系统的总的功率代价在误码率为10^-9时小于1dB。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号