首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2018年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Bandgap engineering of semiconductor nanomaterials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, the growth of single-crystalline quaternary alloyed Ga_(0.75)In_(0.25)As_(0.49)Sb_(0.51) nanowires via a chemical-vapor-deposition method. The synthesized nanowires have a uniform composition distribution along the growth direction, with a zinc-blende structure. In the photoluminescence investigation,these quaternary alloyed semiconductor nanowires show a strong band edge light emission at 1950 nm(0.636 e V). Photodetectors based on these alloy nanowires show a strong light response in the near-infrared region(980 nm) with the external quantum efficiency of 2.0 × 10~4% and the responsivity of 158 A/W. These novel near-infrared photodetectors may find promising applications in integrated infrared photodetection, information communication, and processing.  相似文献   
2.
In this paper,small diameter InP nanowires with high crystal quality were synthesized through a chemical vapor deposition method.Benefitting from the high crystallinity and large specific surface area of InP nanowires,the simply constructed photodetector demonstrates a high responsivity of up to 1170 A·W ~(-1) and an external quantum efficiency of2.8 × 10~5% with a fast rise time of 110 ms and a fall time of 130 ms,even at low bias of 0.1 V.The effect of back-gate voltage on photoresponse of the device was systematically investigated,confirming that the photocurrent dominates over thermionic and tunneling currents in the whole operation.A mechanism based on energy band theory at the junction between metal and semiconductor was proposed to explain the back-gate voltage dependent performance of the photodetectors.These convincing results indicate that fine InP nanowires will have a brilliant future in smart optoelectronics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号