首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 30 毫秒
1
1.
S Lu 《中国物理 B》2021,30(12):126804-126804
Monolayer MnTe2 stabilized as 1T structure has been theoretically predicted to be a two-dimensional (2D) ferromagnetic metal and can be tuned via strain engineering. There is no naturally van der Waals (vdW) layered MnTe2 bulk, leaving mechanical exfoliation impossible to prepare monolayer MnTe2. Herein, by means of molecular beam epitaxy (MBE), we successfully prepared monolayer hexagonal MnTe2 on Si(111) under Te rich condition. Sharp reflection high-energy electron diffraction (RHEED) and low-energy electron diffraction (LEED) patterns suggest the monolayer is atomically flat without surface reconstruction. The valence state of Mn4+ and the atom ratio of ([Te]:[Mn]) further confirm the MnTe2 compound. Scanning tunneling spectroscopy (STS) shows the hexagonal MnTe2 monolayer is a semiconductor with a large bandgap of ~2.78 eV. The valence-band maximum (VBM) locates at the Γ point, as illustrated by angle-resolved photoemission spectroscopy (ARPES), below which three hole-type bands with parabolic dispersion can be identified. The successful synthesis of monolayer MnTe2 film provides a new platform to investigate the 2D magnetism.  相似文献   
2.
The band structures of two-monolayer Bi(110) films on black phosphorus substrates are studied using angleresolved photoemission spectroscopy. Within the band gap of bulk black phosphorus, the electronic states near the Fermi level are dominated by the Bi(110) film. The band dispersions revealed by our data suggest that the orientation of the Bi(110) film is aligned with the black phosphorus substrate. The electronic structures of the Bi(110) film strongly deviate from the band calculations of the free-standing Bi(110) film, suggesting that the substrate can significantly affect the electronic states in the Bi(110) film. Our data show that there are no non-trivial electronic states in Bi(110) films grown on black phosphorus substrates.  相似文献   
3.
Junyu Zong 《中国物理 B》2022,31(10):107301-107301
As a special order of electronic correlation induced by spatial modulation, the charge density wave (CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning—tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the ($sqrt{7}$ × $sqrt{3}$) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe2} film. Combining the variable-temperature angle-resolved photoemission spectroscopic (ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts Δ1 and Δ2. The gap part Δ1 that closes around ~ 150 K is accompanied with the vanish of the ($sqrt{7}$ × $sqrt{3}$) CDW phase. While another momentum-dependent gap part Δ2 can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure Δ1 + Δ2, which suggests different forming mechanisms between the ($sqrt{7}$ × $sqrt{3}$) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe2} film as a two-dimensional (2D) material.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号