首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   1篇
化学   1篇
物理学   3篇
  2020年   1篇
  2004年   2篇
  1989年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
 生命科学包含涉及生命和生物有机体科学研究的许多分支,研究对象包含微生物、植物和动物,包括人类。经过几个世纪的发展,生命科学已经从单纯的描述逐渐发展成了一门理论、计算、实验等多领域交叉学科。自DNA双螺旋结构模型的提出以来,生命科学迈进了崭新的层次——分子生物学的层次,迄今为止,生命科学已经发展成了一门包含众多分支学科的科学体系。生命科学和生物技术,包括基因工程、合成生物学、基因组学和蛋白质组学,已经给人类健康带来了显著的改善。生命科学的发展有助于提高生活质量和标准,并在卫生、农业、医学、制药和食品科学领域得到广泛应用。蛋白质科学是生命科学的一个重要分支,在人类对于自身健康问题广泛关注的今天,蛋白质科学对于理解疾病的分子机制以及新药的开发都产生了强烈的影响,蛋白质科学也为生命科学和生物技术的发展提供了基础支持。  相似文献   
2.
Tunnelling of a two-level atom is investigated in the two-photon mazer when the atom is initially prepared in a coherent superposition state and the cavity in various quantum states. For a strong coherent field, the tunnelling exhibits more regular oscillations but less remarkable switch effect than that in the one-photon mazer. It is discovered that in the presence of atomic coherence, the transmission probabilities in the ultracold regime are significantly different when the cavity field is initially in coherent, squeezed vacuum, even cat and odd cat states, respectively.  相似文献   
3.
粒径小于10 nm的金纳米颗粒(Au NPs)具有高的表面积与体积比,因此具有极强的催化活性,在催化领域应用广泛.传统湿法合成的金纳米颗粒浓度过低,需要进一步富集才能满足实验要求.然而,小粒径Au NPs在浓缩过程中容易聚集,失去催化活性.在保持催化活性的同时,浓缩小粒径的AuNPs是一个挑战.本工作用500 nm硅烷化修饰的SiO2颗粒,通过静电相互作用吸附5 nm Au NPs,在室温下自组装形成Au NPs@SiO2复合物.Au NPs的负载效率可达99.5%,每个SiO2上负载的Au NPs高达800~1000个,大大提高了Au NPs有效浓度,并且富集到SiO2表面的Au NPs不会团聚.催化活性研究结果显示,制备得到的Au NPs@SiO2的催化活性是同浓度Au NPs的3倍.该复合物颗粒重复使用5次后,催化转换效率仍能保持在80%左右.该复合物颗粒能稳定保存一个月,结构和催化活性不变.并且,通过调节Au NPs在SiO2表面的组装密度,可精确调控Au NPs@SiO2催化活性.本工作提供了一种制备高浓度小粒径Au NPs的简单方法,并大大提高了Au NPs催化活性,该方法在富集其它小粒径纳米颗粒中具有广泛应用.  相似文献   
4.
A theoretical approach is proposed to deal with the detuning between the atom and cavity field in the one-photon mazer. Our starting point is to find a conserved quantity, which is characteristic of the atom plus field system. Resorting to this characteristic conserved quantity, we separate the Hamiltonian into two independent parts and then solve the Schr6dinger equation of quantum scattering of an incident cold atom. We investigate the detuning effects on the one-photon induced emission probability and obtain some distinct results in contrast to the previous work.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号