首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   6篇
物理学   6篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
We present nonlinear spectra of four-level ladder cesium atoms employing 6 S1/2→6 P3/2→7 S1/2→30 P3/2 scheme of a room temperature vapor cell.A coupling laser drives Rydberg transition,a dressing laser couples two intermediate levels,and a probe laser optically probes the nonlinear spectra via electromagnetically induced transparency(EIT).Nonlinear spectra are detected as a function of coupling laser frequency.The observed spectra exhibit an enhanced absorption(EA) signal at coupling laser resonance to Rydberg transition and enhanced transmission(ET) signals at detunings to the transition.We define the enhanced absorption(transmission) strength,HEA(HET),and distance between two ET peaks,γET,to describe the spectral feature of the four-level atoms.The enhanced absorption signal HEA is found to have a maximum value when we vary the dressing laser Rabi frequency Ωd,corresponding Rabi frequency is defined as a separatrix point,ΩdSe.The values of ΩdSe and further η=ΩdSe/Ωc are found to depend on the probe and coupling Rabi frequency but not the atomic density.Based on ΩdSe,the spectra can be separated into two regimes,weak and strong dressing ranges,Ωd≤ΩdSe and Ωd≥QdSe,respectively.The spectroscopies display different features at these two regimes.A four-level theoretical model is developed that agrees well with the experimental results in terms of the probe-beam absorption behavior of Rabi frequency-dependent dressed states.  相似文献   
2.
主要研究了热原子蒸气池中铯Rydberg原子nS1/2→(n+1)S1/2微波耦合的双光子光谱.铯原子基态(6S1/2)、第一激发态(6P3/2)、Rydberg态(69S1/2)形成阶梯型三能级系统,弱探测光作用于基态到激发态6S1/2→6P3/2的跃迁,强耦合光则作用于6P3/2→69S1/2的Rydberg跃迁形成电磁感应透明(EIT)效应,实现对Rydberg原子的光学探测.频率fMW=11.735 GHz的微波场耦合69S1/2→70S1/2的Rydberg跃迁,形成微波双光子光谱.利用EIT-AT分裂光谱研究微波电场强度对双光子光谱的影响.研究表明:在强微波场作用时,EIT-AT分裂与微波场功率成正比,而弱微波场时的EIT-AT分裂与微波场功率成非线性依赖关系,理论计算与实验测量结果相一致.本文的研究对微波电场的精密测量具有一定的指导意义.  相似文献   
3.
We present a precise measurement of a weak radio frequency electric field with a frequency of ■3 GHz employing a resonant atomic probe that is constituted with a Rydberg cascade three-level atom, including a cesium ground state |6S(1/2)〉,an excited state |6P(3/2)〉, and Rydberg state |nD(5/2)〉. Two radio frequency(RF) electric fields, noted as local and signal fields, couple the nearby Rydberg transition. The two-photon resonant Rydberg electromagnetically induced transparency(Rydberg-EIT) is employed to directly read out the weak signal field having hundreds of k Hz difference between the local and signal fields that is encoded in the resonant microwave-dressed Rydberg atoms. The minimum detectable signal fields of ESmin= 1.36 ± 0.04 mV/m for 2.18 GHz coupling |68D(5/2)〉→ |69P(3/2)〉 transition and 1.33 ± 0.02 mV/m for 1.32 GHz coupling |80D(5/2)〉→ |81P(3/2)〉 transition are obtained, respectively. The bandwidth dependence is also investigated by varying the signal field frequency and corresponding -3 dB bandwidth of 3 MHz is attained. This method can be employed to perform a rapid and precise measurement of the weak electric field, which is important for the atom-based microwave metrology.  相似文献   
4.
利用Rydberg原子作为微波传感器实现了微弱场的测量与通信.在铯原子蒸气池中,相向传输的探测光(852 nm)和耦合光(510 nm)与铯原子相互作用形成阶梯型三能级电磁感应透明光谱,用于实现Rydberg原子的光学探测.频率约为2.19 GHz的强微波场作为本地场(EL),共振耦合相邻的两个Rydberg能级|68D5/2>和|69P3/2>,与具有一定失谐δf的待测微弱信号场(Es)同时作用于Rydberg原子.Rydberg原子作为微波混频器可直接读出两束微波的差频信号,实现待测信号场的高灵敏探测,对应的最小测量值为E0=1.7μV/cm,频率分辨率小于1 Hz.在此基础上,对微弱信号场进行编码,实验上很好地还原了加载到微波弱场上的基带信号,测量的传输带宽达200 MHz,实现了微弱场条件下的通信.  相似文献   
5.
主要研究了热原子蒸气池中铯Rydberg原子nS1/2→(n+1)S1/2微波耦合的双光子光谱.铯原子基态(6S1/2)、第一激发态(6P3/2)、Rydberg态(69S1/2)形成阶梯型三能级系统,弱探测光作用于基态到激发态6S1/2→6P3/2的跃迁,强耦合光则作用于6P3/2→69S1/2的Rydberg跃迁形成电磁感应透明(EIT)效应,实现对Rydberg原子的光学探测.频率fMW=11.735 GHz的微波场耦合69S1/2→70S1/2的Rydberg跃迁,形成微波双光子光谱.利用EIT-AT分裂光谱研究微波电场强度对双光子光谱的影响.研究表明:在强微波场作用时,EIT-AT分裂与微波场功率成正比,而弱微波场时的EIT-AT分裂与微波场功率成非线性依赖关系,理论计算与实验测量结果相一致.本文的研究对微波电场的精密测量具有一定的指导意义.  相似文献   
6.
主要研究了室温下微波场缀饰的铯Rydberg原子的电磁感应透明-Autler-Townes(EIT-AT)光谱.首先,以铯原子6S_(1/2)→6P_(3/2)→50S_(1/2)形成阶梯型三能级系统,利用强耦合光作用于6P_(3/2)→50S_(1/2)的Rydberg跃迁,弱探测光耦合基态跃迁6S_(1/2)→6P_(3/2)并探测由耦合光形成的电磁感应透明(EIT)效应.然后,以频率为30.582 GHz的微波电场耦合相邻的Rydberg能级50S_(1/2)→50P_(1/2)产生微波AT分裂.利用Rydberg EIT探测微波耦合相邻Rydberg能级产生的AT分裂,形成EIT-AT光谱,进而实现微波电场的测量.当微波场的强度增加到一定值时,EIT-AT光谱表现为多峰光谱结构.分析EIT-AT多峰光谱的成因,发现这主要是由场的不均匀性导致的,一定的EIT-AT光谱特征对应于特定的非均匀场分布.研究表明,利用Rydberg EIT-AT光谱可以实现微波电场的测量,利用其光谱特征可实现微波场的实时监测,进而提出了一种提高微波场空间分辨率的测量方法.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号