首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2019年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
将三维荧光光谱技术、小波压缩和交替惩罚三线性分解算法(APTLD)结合,提出了一种鉴别掺伪芝麻油的新方法。利用荧光光谱仪测量纯芝麻油及掺伪芝麻油样本的三维荧光光谱,通过激发校正和发射校正消除仪器带来的误差,得到样本的真实三维荧光光谱数据;利用小波压缩对处理后的真实数据进行压缩,以减少冗余信息,其中压缩分数和数据恢复分数分别大于94.00%和98.00%;利用APTLD算法对压缩后的数据进行定性及定量分析,得到的回收率为97.0%~99.8%,预测方均根误差不大于0.120。研究结果表明,所提方法能够准确鉴别纯芝麻油及掺伪芝麻油样本,并对其组分含量进行预测。  相似文献   
2.
石油作为重要的能源和工业原料,在造福人类社会的同时,其引起的环境污染问题日益严重。因此针对混合油液的快速、准确检测成为鉴别溢油来源和保护生态环境的重要内容。石油类物质一般由具有较强荧光特性的芳香烃成分及其衍生物组成,荧光光谱分析技术以其灵敏度高、分析速度快和受风化影响程度小等优点成为了混合油液检测的重要手段之一,并与二阶校正和三阶校正的各类算法相结合取得了较好的成分鉴别和浓度预测效果。但二阶校正算法普遍存在对噪声的容忍能力弱和对组分数敏感、收敛速度慢等不足,限制了在实际混合油液检测中的应用。针对上述存在的问题,将三维荧光光谱技术和交替加权残差约束四线性分解(AWRCQLD)算法相结合,提出一种用于混合油液检测的新方法。首先以乙醇作为溶剂,将航空煤油和润滑油按不同浓度比配制7个校正样本、4个预测样本和3个空白样本;然后利用FLS920荧光光谱仪采集拟进行成分检测的混合油液在不同实验温度条件下共42个样本的荧光光谱数据,并通过空白扣除的方法消除散射的干扰;再利用核一致诊断法和残差分析法估计出最佳的组分数;最后分别利用AWRCQLD算法、4阶平行因子(4-PARAFAC)算法和二阶校正算法解析样本的荧光光谱数据,做出混合油液样本的定性鉴别和定量预测。研究结果表明,经AWRCQLD算法解析后得到的航空煤油预测样本的回收率为96.7%~102.7%、预测均方根误差为0.015 mg·mL-1;润滑油预测样本的回收率为96.9%~101.7%、预测均方根误差为0.009 mg·mL-1;在不同实验温度条件构建的四维响应数阵能够更为准确地测定出航空煤油和润滑油的组分浓度,其回收率更高和预测均方根误差更小,满足准确定量分析的要求;AWRCQLD算法在航空煤油和润滑油样本的荧光光谱严重重叠的情况下,较之二阶校正算法和4-PARAFAC算法,AWRCQLD算法更能够体现出三阶校正算法所具有的优势,综合预测能力更强,达到了对混合油液进行快速检测的目的。该研究提供了一种不依赖于“物理和化学分离”的快速、准确的对混合油液进行检测的“数学分离”方法,为石油类混合油液检测提供了必要的技术支持。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号