首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
物理学   5篇
  2010年   4篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
研究了碳酸铯(Cs2CO3)掺杂8-羟基喹啉铝(Alq3)作为电子注入层对有机电致发光器件性能的影响。结果表明,与常用的Cs2CO3超薄层作电子注入层相比,Cs2CO3∶Alq3共蒸阴极对器件效率和亮度有很大提高,器件电流效率从3.1 cd/A(Cs2CO31 nm/Al)提高到6.5 cd/A(Cs2CO33%∶Alq3/Al)。器件性能的提高归因于Cs2CO3∶Alq3共蒸阴极比单层Cs2CO3阴极具有更好的电子注入能力和电子传输性能。薄膜形貌表明,共蒸阴极能有效降低Alq3表面粗糙度,有助于提高器件发光性能及寿命。  相似文献   
2.
李艳武  刘彭义  侯林涛  吴冰 《物理学报》2010,59(2):1248-1251
以Rubrene为电子传输层(ETL),制备了结构为ITO/MoO3(5nm)/Rubrene(50nm)/C60(45nm)/Rubrene(0,3,5.5,9.5nm)/Al(130nm)的有机太阳能电池.与没有ETL的器件相比,含5.5nmRubrene的电池的开路电压、填充因子、功率转换效率分别从0.68V,0.488,0.315%增加到0.86V,0.574,0.490%.实验结果分析表明:热的Al原子直接沉积在C60上,破坏了C60层,形成高功函数的C60/Al阴极,弱化内建电场,降低电池性能;当插入ETL后,C60层得到保护,热的Al原子沉积破坏了Rubrene层,形成了缺陷态能级,提高电池的内建电场,促进了电子的传输.进一步的单电子电池实验表明,缺陷态能级低于C60的最低未占据分子轨道.  相似文献   
3.
倒置异质结有机太阳能电池的电子传输层   总被引:2,自引:2,他引:0       下载免费PDF全文
制备了结构为ITO/BCP或Alq3(x=0,2,6,10,20,40 nm)/C60(50 nm)/Rubrene(50 nm)/MoO3(5nm)/Al(130 nm)的倒置异质结有机太阳能电池,其中BCP或Alq3作电子传输层。实验结果表明:当BCP或Alq3≤6 nm时,器件性能随电子传输层厚度的变化不大;当BCP或Alq3≥10 nm时,随电子传输层厚度的增加,含Alq3器件的性能衰减很快,含BCP器件的性能衰减相对较慢,且其开路电压保持不变。分析表明:当电子传输层较薄时,粗糙的ITO使电子较容易从C60注入到ITO;当电子传输层较厚时,BCP/C60之间的能带弯曲使二者之间几乎不存在势垒,含BCP器件性能较差主要源于BCP较差的电子迁移率,而含Alq3器件性能较差主要源于Alq3/C60之间的势垒。  相似文献   
4.
MoO_3作空穴注入层的有机电致发光器件(英文)   总被引:6,自引:4,他引:2       下载免费PDF全文
研究了三氧化钼(MoO3)薄层作为有机电致发光器件空穴注入层的器件性能和注入机制。发现1nm厚度下发光器件性能最佳,器件的最大电流效率比对比发光器件的最大电流效率提高1.6倍。器件的电容曲线表明MoO3薄层能有效提高空穴载流子的注入,多数载流子开始注入的拐点大约降低了9V。单空穴载流子电流曲线说明MoO3器件的电流注入是空间电荷受限电流注入机制,MoO3使阳极界面处形成欧姆接触,而对比器件的电流注入是陷阱电荷受限电流注入机制。器件的光伏曲线进一步说明器件性能的提高是由于MoO3层能使阳极界面能级分布发生改变,1nmMoO3厚度下器件的内建电势从对比器件的0.25V提高到了0.8V,有效降低了空穴注入势垒,提高了器件性能,但过厚的MoO3层由于增加了器件的串联内阻,会导致器件性能降低。  相似文献   
5.
武春红  刘彭义  侯林涛  李艳武 《物理学报》2008,57(11):7317-7321
用稳态光谱和时间分辨的超快光谱研究了不同浓度磷光染料PtOEP掺杂有机小分子Alq薄膜的发光特性和能量转移.据PtOEP的吸收光谱与Alq的荧光光谱,用Frster理论估算出Alq:PtOEP掺杂体系的能量转移临界半径及其转移效率.稳态荧光光谱显示,在Alq:PtOEP掺杂薄膜中,随着掺杂浓度的升高,PtOEP的发光强度增强,Alq的发光强度逐渐减弱,两者间的能量转移效率与理论计算结果一致.利用时间分辨光谱研究了Alq:PtOEP掺杂薄膜体系的能量转移动力学过程,观察到Alq:PtOEP掺杂薄膜的荧光寿 关键词: 有机掺杂薄膜 稳态光谱 时间分辨光谱 能量转移  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号