首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
力学   4篇
物理学   1篇
  2024年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
运用ANSYS/LS_DYNA软件分析了聚能射流对充液结构的毁伤,初步获得了药型罩壁厚和材料等参数对聚能战斗部水下作用的影响特性。药型罩壁厚在0.04Dk~0.06Dk(Dk为装药直径)之间形成的射流对充液防护结构具有较优的侵彻性能;当δ<0.04Dk时,杆流成型结构较差,在水中的动能抗衰减性能较低;δ>0.06Dk时,射流的初始动能低,靶后效果差。药型罩可采用纯铁、紫铜和钽3种材料,其中纯铁射流的侵彻能力最高,钽射流在水中的动能抗衰减性能最好,紫铜射流具有较好的综合性能。  相似文献   
2.
为研究高速破片(钨球)撞击充液容器(贯穿前后壁面)时容器壁面的毁伤情况,利用ANSYS/LS-DYNA对该过程进行了数值模拟,分析了破片撞击动能对充液容器前后壁面毁伤程度的影响,并进行实验验证。结果表明:高速破片撞击充液容器形成的液压水锤对充液容器前后壁面的破坏程度可分为3个等级,即前后壁面均未出现裂纹、前壁面没有出现裂纹后壁面出现裂纹和前后壁面均出现裂纹且后壁面呈花瓣式开裂;破片撞击充液容器过程中,前后壁面的最大变形量和前后壁面的裂纹总数随破片撞击动能的增加而增大。  相似文献   
3.
为了快速准确地评估弹药对目标的毁伤效能,提出了一种基于多矩形饼切函数的弹药毁伤效能评估方法。该方法采用梯形法则、分区等效的思想,可以较大程度地保留实际毁伤区域中毁伤概率值的分布规律,从而保证计算的准确度。通过算例分析,研究了弹药落角和投放精度对目标平均毁伤概率的影响,并与基于矩形饼切和卡尔顿毁伤函数方法的结果进行了比较。结果表明,在弹药落角范围为30°~75°及弹药投放精度(circular error probable, CEP)范围为5~50 m时,与矩形饼切毁伤函数相比,基于多矩形饼切毁伤函数的计算方法使毁伤效能计算精度最大提高了26.4%;同时,与卡尔顿毁伤函数相比,计算效率提高了518倍。  相似文献   
4.
采用理论计算、数值模拟与实验相结合的方法,研究了直径5.7 mm、长6.7 mm的圆柱形破片以800~1 200 m/s的速度撞击2~10 mm厚铝靶时的跳飞特性。建立了破片斜侵彻有限厚靶板的跳飞临界角理论模型,计算得到破片跳飞临界角与破片入射速度、靶板厚度的关系,并与模拟值、实验值对比,三者吻合较好。结果表明:破片撞靶速度相同时,随着靶板厚度的增加,破片的跳飞临界角减小。靶板厚度相同的情况下,在所计算的速度范围内,入射速度越大,破片跳飞临界角越大。速度在800~1 200 m/s时,破片撞击2 mm厚靶板的跳飞临界角为81°~81.25°;撞击4 mm厚靶板的跳飞临界角为72.5°~76.25°。  相似文献   
5.
为研究液压水锤效应拖拽阶段的气腔特性,利用数值模拟与实验相结合的方法对破片撞击充液容器的过程进行研究,并分析了破片撞击速度和液体介质对液压水锤效应拖拽阶段气腔的影响。结果表明:破片撞击充液容器时,在液体中形成的气腔形状为圆锥形,其最大直径和长度随破片的运动逐渐增大,气腔长径比最终趋于一稳定变化区域,约在3.8~3.9之间;气腔最大直径随着破片撞击速度的增大而增大;柴油介质中形成气腔的最大直径和长径比变化规律与水介质中形成的相同,气腔长径比最终在4.25左右浮动,柴油介质中形成气腔的最大直径和长径比均大于水介质中形成的。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号